Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090726544> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3090726544 abstract "Abstract Microbes can metabolize more chemical compounds than any other group of organisms. As a result, their metabolism is of interest to investigators across biology. Despite the interest, information on metabolism of specific microbes is hard to access. Information is buried in text of books and journals, and investigators have no easy way to extract it out. Here we investigate if neural networks can extract out this information and predict metabolic traits. For proof of concept, we predicted two traits: whether microbes carry one type of metabolism (fermentation) or produce one metabolite (acetate). We collected written descriptions of 7,021 species of bacteria and archaea from Bergey’s Manual. We read the descriptions and manually identified (labeled) which species were fermentative or produced acetate. We then trained neural networks to predict these labels. In total, we identified 2,364 species as fermentative, and 1,009 species as also producing acetate. Neural networks could predict which species were fermentative with 97.3% accuracy. Accuracy was even higher (98.6%) when predicting species also producing acetate. We used these predictions to draw phylogenetic trees of species with these traits. The resulting trees were close to the actual trees (drawn using labels). Previous counts of fermentative species are 4-fold lower than our own. For acetate-producing species, they are 100-fold lower. This undercounting confirms past difficulty in extracting metabolic traits from text. Our approach with neural networks can extract information efficiently and accurately. It paves the way for putting more metabolic traits into databases, providing easy access of information by investigators." @default.
- W3090726544 created "2020-10-08" @default.
- W3090726544 creator A5079646564 @default.
- W3090726544 date "2020-09-30" @default.
- W3090726544 modified "2023-09-23" @default.
- W3090726544 title "Using neural networks to mine text and predict metabolic traits for thousands of microbes" @default.
- W3090726544 cites W1605984840 @default.
- W3090726544 cites W1991310235 @default.
- W3090726544 cites W2042638652 @default.
- W3090726544 cites W2112504441 @default.
- W3090726544 cites W2127322768 @default.
- W3090726544 cites W2141052558 @default.
- W3090726544 cites W2315521535 @default.
- W3090726544 cites W2520355709 @default.
- W3090726544 cites W2562274706 @default.
- W3090726544 cites W2786671949 @default.
- W3090726544 cites W2792743692 @default.
- W3090726544 cites W2894089370 @default.
- W3090726544 cites W2895532240 @default.
- W3090726544 cites W2898201023 @default.
- W3090726544 cites W2903216094 @default.
- W3090726544 cites W2961191798 @default.
- W3090726544 cites W3044917564 @default.
- W3090726544 doi "https://doi.org/10.1101/2020.09.29.319335" @default.
- W3090726544 hasPublicationYear "2020" @default.
- W3090726544 type Work @default.
- W3090726544 sameAs 3090726544 @default.
- W3090726544 citedByCount "0" @default.
- W3090726544 crossrefType "posted-content" @default.
- W3090726544 hasAuthorship W3090726544A5079646564 @default.
- W3090726544 hasBestOaLocation W30907265441 @default.
- W3090726544 hasConcept C104317684 @default.
- W3090726544 hasConcept C154945302 @default.
- W3090726544 hasConcept C193252679 @default.
- W3090726544 hasConcept C41008148 @default.
- W3090726544 hasConcept C50644808 @default.
- W3090726544 hasConcept C523546767 @default.
- W3090726544 hasConcept C54355233 @default.
- W3090726544 hasConcept C550995028 @default.
- W3090726544 hasConcept C55493867 @default.
- W3090726544 hasConcept C86803240 @default.
- W3090726544 hasConceptScore W3090726544C104317684 @default.
- W3090726544 hasConceptScore W3090726544C154945302 @default.
- W3090726544 hasConceptScore W3090726544C193252679 @default.
- W3090726544 hasConceptScore W3090726544C41008148 @default.
- W3090726544 hasConceptScore W3090726544C50644808 @default.
- W3090726544 hasConceptScore W3090726544C523546767 @default.
- W3090726544 hasConceptScore W3090726544C54355233 @default.
- W3090726544 hasConceptScore W3090726544C550995028 @default.
- W3090726544 hasConceptScore W3090726544C55493867 @default.
- W3090726544 hasConceptScore W3090726544C86803240 @default.
- W3090726544 hasLocation W30907265441 @default.
- W3090726544 hasLocation W30907265442 @default.
- W3090726544 hasOpenAccess W3090726544 @default.
- W3090726544 hasPrimaryLocation W30907265441 @default.
- W3090726544 hasRelatedWork W11356396 @default.
- W3090726544 hasRelatedWork W14374489 @default.
- W3090726544 hasRelatedWork W17081961 @default.
- W3090726544 hasRelatedWork W18301285 @default.
- W3090726544 hasRelatedWork W20815591 @default.
- W3090726544 hasRelatedWork W26167377 @default.
- W3090726544 hasRelatedWork W27625141 @default.
- W3090726544 hasRelatedWork W30971798 @default.
- W3090726544 hasRelatedWork W32441777 @default.
- W3090726544 hasRelatedWork W6680660 @default.
- W3090726544 isParatext "false" @default.
- W3090726544 isRetracted "false" @default.
- W3090726544 magId "3090726544" @default.
- W3090726544 workType "article" @default.