Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090729638> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3090729638 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2020Uncertainty analysis of joint inversion using mixed Lp-norm regularizationAuthors: Xiaolong WeiJiajia SunXiaolong WeiUniversity of HoustonSearch for more papers by this author and Jiajia SunUniversity of HoustonSearch for more papers by this authorhttps://doi.org/10.1190/segam2020-3428359.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractJoint inversion has received considerable attention recently because of the presumed decrease in uncertainty of the recovered models. However, quantification of uncertainty and its reduction (or, lack thereof) in joint inversion remains underexplored. We approach the problem by generating a large sequence of jointly inverted models that are all equally valid from the point of view of reproducing the observed data but are characterized by vastly different types of features. Specifically, we formulate our joint inversion using a mixed Lp norm formulation where various combinations of Lp (0 ≤ p ≤ 2) norms can be implemented on different components of the regularization terms. We randomly sample the p-norm values multiple times, and generate a large number of models. Uncertainty can then be quantitatively analyzed by measuring the degree of variability in the recovered physical property values. Following the same procedures, we also test how correct and incorrect prior information, when imposed on joint inversions, affects the uncertainty. Our work shows that uncertainty of joint inversion results can be empirically and efficiently assessed using this approach. Our numerical results also show that a reduction in uncertainty does not necessarily lead to an increase in accuracy.Presentation Date: Tuesday, October 13, 2020Session Start Time: 8:30 AMPresentation Time: 9:45 AMLocation: 362CPresentation Type: OralKeywords: inversion, 3D, gradiometry, magneticsPermalink: https://doi.org/10.1190/segam2020-3428359.1FiguresReferencesRelatedDetailsCited byA deep learning-enhanced framework for multiphysics joint inversionYanyan Hu, Xiaolong Wei, Xuqing Wu, Jiajia Sun, Jiuping Chen, Yueqin Huang, and Jiefu Chen27 December 2022 | GEOPHYSICS, Vol. 88, No. 1Sparse Radon transform in the mixed frequency-time domain with ℓ1-2 minimizationWeiheng Geng, Xiaohong Chen, Jingye Li, Jitao Ma, Wei Tang, and Fan Wu5 September 2022 | GEOPHYSICS, Vol. 87, No. 53D probabilistic geology differentiation based on airborne geophysics, mixed Lp norm joint inversion, and physical property measurementsXiaolong Wei and Jiajia Sun28 June 2022 | GEOPHYSICS, Vol. 87, No. 4Towards a better understanding of the recoverability of physical property relationships from geophysical inversions of multiple potential-field data sets31 March 2022 | Geophysical Journal International, Vol. 230, No. 33D high‐order sparse radon transform with L1–2 minimization for multiple attenuation4 March 2022 | Geophysical Prospecting, Vol. 70, No. 4UB-Net: Improved Seismic Inversion Based on Uncertainty BackpropagationIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Deep learning-enhanced multiphysics joint inversionYanyan Hu, Xiaolong Wei, Xuqing Wu, Jiajia Sun, Jiefu Chen, Jiuping Chen, and Yueqing Huang1 September 2021Geophysical characterization of a buried niobium and rare earth element deposit using 3D joint inversion and geology differentiation: A case study on the Elk Creek carbonatiteKenneth Li, Xiaolong Wei, and Jiajia Sun1 September 20213D probabilistic geology differentiation using mixed Lp norm joint inversion constrained by petrophysical informationXiaolong Wei and Jiajia Sun1 September 2021 SEG Technical Program Expanded Abstracts 2020ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2020 Pages: 3887 publication data© 2020 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 30 Sep 2020 CITATION INFORMATION Xiaolong Wei and Jiajia Sun, (2020), Uncertainty analysis of joint inversion using mixed Lp-norm regularization, SEG Technical Program Expanded Abstracts : 925-929. https://doi.org/10.1190/segam2020-3428359.1 Plain-Language Summary Keywordsinversion3DgradiometrymagneticsPDF DownloadLoading ..." @default.
- W3090729638 created "2020-10-08" @default.
- W3090729638 creator A5060423198 @default.
- W3090729638 creator A5064534797 @default.
- W3090729638 date "2020-09-30" @default.
- W3090729638 modified "2023-09-27" @default.
- W3090729638 title "Uncertainty analysis of joint inversion using mixed L<sub>p</sub>-norm regularization" @default.
- W3090729638 cites W1512208174 @default.
- W3090729638 cites W1790833911 @default.
- W3090729638 cites W1827669647 @default.
- W3090729638 cites W1977638890 @default.
- W3090729638 cites W1978723754 @default.
- W3090729638 cites W1993803475 @default.
- W3090729638 cites W2011378167 @default.
- W3090729638 cites W2028496557 @default.
- W3090729638 cites W2042616385 @default.
- W3090729638 cites W2069878070 @default.
- W3090729638 cites W2074934134 @default.
- W3090729638 cites W2084320638 @default.
- W3090729638 cites W2098433339 @default.
- W3090729638 cites W2101716389 @default.
- W3090729638 cites W2125943796 @default.
- W3090729638 cites W2142448321 @default.
- W3090729638 cites W2142654211 @default.
- W3090729638 cites W2149082020 @default.
- W3090729638 cites W2164289056 @default.
- W3090729638 cites W2164332420 @default.
- W3090729638 cites W2167794065 @default.
- W3090729638 cites W2508022387 @default.
- W3090729638 cites W2517666902 @default.
- W3090729638 cites W2529422904 @default.
- W3090729638 cites W2559488099 @default.
- W3090729638 cites W2925265835 @default.
- W3090729638 cites W2967675506 @default.
- W3090729638 cites W3035000953 @default.
- W3090729638 doi "https://doi.org/10.1190/segam2020-3428359.1" @default.
- W3090729638 hasPublicationYear "2020" @default.
- W3090729638 type Work @default.
- W3090729638 sameAs 3090729638 @default.
- W3090729638 citedByCount "9" @default.
- W3090729638 countsByYear W30907296382021 @default.
- W3090729638 countsByYear W30907296382022 @default.
- W3090729638 crossrefType "proceedings-article" @default.
- W3090729638 hasAuthorship W3090729638A5060423198 @default.
- W3090729638 hasAuthorship W3090729638A5064534797 @default.
- W3090729638 hasConcept C109007969 @default.
- W3090729638 hasConcept C11413529 @default.
- W3090729638 hasConcept C126255220 @default.
- W3090729638 hasConcept C127313418 @default.
- W3090729638 hasConcept C151730666 @default.
- W3090729638 hasConcept C154945302 @default.
- W3090729638 hasConcept C17744445 @default.
- W3090729638 hasConcept C1893757 @default.
- W3090729638 hasConcept C191795146 @default.
- W3090729638 hasConcept C199539241 @default.
- W3090729638 hasConcept C2776135515 @default.
- W3090729638 hasConcept C28826006 @default.
- W3090729638 hasConcept C33923547 @default.
- W3090729638 hasConcept C41008148 @default.
- W3090729638 hasConceptScore W3090729638C109007969 @default.
- W3090729638 hasConceptScore W3090729638C11413529 @default.
- W3090729638 hasConceptScore W3090729638C126255220 @default.
- W3090729638 hasConceptScore W3090729638C127313418 @default.
- W3090729638 hasConceptScore W3090729638C151730666 @default.
- W3090729638 hasConceptScore W3090729638C154945302 @default.
- W3090729638 hasConceptScore W3090729638C17744445 @default.
- W3090729638 hasConceptScore W3090729638C1893757 @default.
- W3090729638 hasConceptScore W3090729638C191795146 @default.
- W3090729638 hasConceptScore W3090729638C199539241 @default.
- W3090729638 hasConceptScore W3090729638C2776135515 @default.
- W3090729638 hasConceptScore W3090729638C28826006 @default.
- W3090729638 hasConceptScore W3090729638C33923547 @default.
- W3090729638 hasConceptScore W3090729638C41008148 @default.
- W3090729638 hasLocation W30907296381 @default.
- W3090729638 hasOpenAccess W3090729638 @default.
- W3090729638 hasPrimaryLocation W30907296381 @default.
- W3090729638 hasRelatedWork W1965139815 @default.
- W3090729638 hasRelatedWork W1968390457 @default.
- W3090729638 hasRelatedWork W2095394046 @default.
- W3090729638 hasRelatedWork W2115180176 @default.
- W3090729638 hasRelatedWork W2158914562 @default.
- W3090729638 hasRelatedWork W232368253 @default.
- W3090729638 hasRelatedWork W2386767533 @default.
- W3090729638 hasRelatedWork W2990473846 @default.
- W3090729638 hasRelatedWork W3084216571 @default.
- W3090729638 hasRelatedWork W4283826563 @default.
- W3090729638 isParatext "false" @default.
- W3090729638 isRetracted "false" @default.
- W3090729638 magId "3090729638" @default.
- W3090729638 workType "article" @default.