Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090756503> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3090756503 endingPage "249" @default.
- W3090756503 startingPage "243" @default.
- W3090756503 abstract "Background/Purpose Electronic portal imaging device (EPID) dosimetry aims to detect treatment errors, potentially leading to treatment adaptation. Clinically used threshold classification methods for detecting errors lead to loss of information (from multi-dimensional EPID data to a few numbers) and cannot be used for identifying causes of errors. Advanced classification methods, such as deep learning, can use all available information. In this study, convolutional neural networks (CNNs) were trained to detect and identify error type and magnitude of simulated treatment errors in lung cancer patients. The purpose of this simulation study is to provide a proof-of-concept of CNNs for error identification using EPID dosimetry in an in vivo scenario. Materials and methods Clinically realistic ranges of anatomical changes, positioning errors and mechanical errors were simulated for lung cancer patients. Predicted portal dose images (PDIs) containing errors were compared to error-free PDIs using the widely used gamma analysis. CNNs were trained to classify errors using 2D gamma maps. Three classification levels were assessed: Level 1 (main error type, e.g., anatomical change), Level 2 (error subtype, e.g., tumor regression) and Level 3 (error magnitude, e.g., >50% tumor regression). Results CNNs showed good performance for all classification levels (training/test accuracy 99.5%/96.1%, 92.5%/86.8%, 82.0%/72.9%). For Level 3, overfitting became more apparent. Conclusion This simulation study indicates that deep learning is a promising powerful tool for identifying types and magnitude of treatment errors with EPID dosimetry, providing additional information not currently available from EPID dosimetry. This is a first step towards rapid, automated models for identification of treatment errors using EPID dosimetry." @default.
- W3090756503 created "2020-10-08" @default.
- W3090756503 creator A5019292156 @default.
- W3090756503 creator A5063945256 @default.
- W3090756503 creator A5068696493 @default.
- W3090756503 date "2020-12-01" @default.
- W3090756503 modified "2023-10-12" @default.
- W3090756503 title "Identification of treatment error types for lung cancer patients using convolutional neural networks and EPID dosimetry" @default.
- W3090756503 cites W1963650567 @default.
- W3090756503 cites W1967121735 @default.
- W3090756503 cites W1969125839 @default.
- W3090756503 cites W1975552064 @default.
- W3090756503 cites W2089817484 @default.
- W3090756503 cites W2127539765 @default.
- W3090756503 cites W2167732247 @default.
- W3090756503 cites W2346716612 @default.
- W3090756503 cites W2622932075 @default.
- W3090756503 cites W2749375587 @default.
- W3090756503 cites W2794962342 @default.
- W3090756503 cites W2808391149 @default.
- W3090756503 cites W2887229430 @default.
- W3090756503 cites W2891678058 @default.
- W3090756503 cites W2897639648 @default.
- W3090756503 cites W2905098610 @default.
- W3090756503 cites W2919115771 @default.
- W3090756503 cites W2988665419 @default.
- W3090756503 cites W3081879563 @default.
- W3090756503 cites W940514493 @default.
- W3090756503 cites W2770177479 @default.
- W3090756503 doi "https://doi.org/10.1016/j.radonc.2020.09.048" @default.
- W3090756503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33011206" @default.
- W3090756503 hasPublicationYear "2020" @default.
- W3090756503 type Work @default.
- W3090756503 sameAs 3090756503 @default.
- W3090756503 citedByCount "17" @default.
- W3090756503 countsByYear W30907565032021 @default.
- W3090756503 countsByYear W30907565032022 @default.
- W3090756503 countsByYear W30907565032023 @default.
- W3090756503 crossrefType "journal-article" @default.
- W3090756503 hasAuthorship W3090756503A5019292156 @default.
- W3090756503 hasAuthorship W3090756503A5063945256 @default.
- W3090756503 hasAuthorship W3090756503A5068696493 @default.
- W3090756503 hasConcept C105795698 @default.
- W3090756503 hasConcept C153180895 @default.
- W3090756503 hasConcept C154945302 @default.
- W3090756503 hasConcept C22019652 @default.
- W3090756503 hasConcept C2989005 @default.
- W3090756503 hasConcept C31601959 @default.
- W3090756503 hasConcept C33923547 @default.
- W3090756503 hasConcept C41008148 @default.
- W3090756503 hasConcept C50644808 @default.
- W3090756503 hasConcept C71924100 @default.
- W3090756503 hasConcept C75088862 @default.
- W3090756503 hasConcept C81363708 @default.
- W3090756503 hasConcept C83546350 @default.
- W3090756503 hasConcept C9267231 @default.
- W3090756503 hasConceptScore W3090756503C105795698 @default.
- W3090756503 hasConceptScore W3090756503C153180895 @default.
- W3090756503 hasConceptScore W3090756503C154945302 @default.
- W3090756503 hasConceptScore W3090756503C22019652 @default.
- W3090756503 hasConceptScore W3090756503C2989005 @default.
- W3090756503 hasConceptScore W3090756503C31601959 @default.
- W3090756503 hasConceptScore W3090756503C33923547 @default.
- W3090756503 hasConceptScore W3090756503C41008148 @default.
- W3090756503 hasConceptScore W3090756503C50644808 @default.
- W3090756503 hasConceptScore W3090756503C71924100 @default.
- W3090756503 hasConceptScore W3090756503C75088862 @default.
- W3090756503 hasConceptScore W3090756503C81363708 @default.
- W3090756503 hasConceptScore W3090756503C83546350 @default.
- W3090756503 hasConceptScore W3090756503C9267231 @default.
- W3090756503 hasFunder F4320309603 @default.
- W3090756503 hasLocation W30907565031 @default.
- W3090756503 hasOpenAccess W3090756503 @default.
- W3090756503 hasPrimaryLocation W30907565031 @default.
- W3090756503 hasRelatedWork W2742991909 @default.
- W3090756503 hasRelatedWork W2767651786 @default.
- W3090756503 hasRelatedWork W2912288872 @default.
- W3090756503 hasRelatedWork W3012393889 @default.
- W3090756503 hasRelatedWork W3081496756 @default.
- W3090756503 hasRelatedWork W3127819136 @default.
- W3090756503 hasRelatedWork W4220996320 @default.
- W3090756503 hasRelatedWork W4283701629 @default.
- W3090756503 hasRelatedWork W564581980 @default.
- W3090756503 hasRelatedWork W785854688 @default.
- W3090756503 hasVolume "153" @default.
- W3090756503 isParatext "false" @default.
- W3090756503 isRetracted "false" @default.
- W3090756503 magId "3090756503" @default.
- W3090756503 workType "article" @default.