Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090767877> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3090767877 abstract "Climate and weather variability are thought-provoking for world communities. In this apprehension, weather variability imposes a broad impact on the economy and the survival of the living entities. In relation to the African continent country Ethiopia, it is desirable to have great attention on the weather variability. The Ethiopian Dodota Woreda region is continuously affected by repeated droughts. It gives a great alarm to investigate and analyze the factors which are major causes of the frequent occurrence of drought. Although the weather scientists and domain experts are overwhelmed with meteorological data but lacking in analyzing and revealing the hidden knowledge or patterns about weather variability. This paper is an effort to design an enhanced predictive model for weather variability forecasting through Data Mining Techniques. The parameters used in this research are temperature, dew point, sunshine, rainfall, wind speed, maximum temperature, minimum temperature, and relative humidity to enhance the accuracy of forecasting. To improve the accuracy, we used the Multilayer-perceptron (MLP), Naive Bayes, and multinomial logistic regression algorithms to design a proposed Predictive Model. The knowledge discovery in database (KDD) process model was used as a framework for the modeling purpose. The research findings revealed that the aforementioned parameters have a strong positive relationship with weather forecasting in meteorology sectors. The MLP model with selected parameters presents an interesting predictive accuracy result i.e. 98.3908% as correctly classified instances. The most performing algorithm, MLP was chosen and used to generate interesting patterns. The domain experts (meteorologists) validated the discovered patterns for the improved accuracy of weather variability forecasting." @default.
- W3090767877 created "2020-10-08" @default.
- W3090767877 creator A5046269705 @default.
- W3090767877 creator A5066865109 @default.
- W3090767877 creator A5078710924 @default.
- W3090767877 date "2020-01-01" @default.
- W3090767877 modified "2023-10-18" @default.
- W3090767877 title "Weather Variability Forecasting Model through Data Mining Techniques" @default.
- W3090767877 doi "https://doi.org/10.14569/ijacsa.2020.0110905" @default.
- W3090767877 hasPublicationYear "2020" @default.
- W3090767877 type Work @default.
- W3090767877 sameAs 3090767877 @default.
- W3090767877 citedByCount "0" @default.
- W3090767877 crossrefType "journal-article" @default.
- W3090767877 hasAuthorship W3090767877A5046269705 @default.
- W3090767877 hasAuthorship W3090767877A5066865109 @default.
- W3090767877 hasAuthorship W3090767877A5078710924 @default.
- W3090767877 hasBestOaLocation W30907678771 @default.
- W3090767877 hasConcept C119857082 @default.
- W3090767877 hasConcept C12267149 @default.
- W3090767877 hasConcept C124101348 @default.
- W3090767877 hasConcept C153294291 @default.
- W3090767877 hasConcept C154945302 @default.
- W3090767877 hasConcept C161067210 @default.
- W3090767877 hasConcept C179717631 @default.
- W3090767877 hasConcept C205649164 @default.
- W3090767877 hasConcept C21001229 @default.
- W3090767877 hasConcept C41008148 @default.
- W3090767877 hasConcept C50644808 @default.
- W3090767877 hasConcept C52001869 @default.
- W3090767877 hasConcept C60908668 @default.
- W3090767877 hasConcept C82210777 @default.
- W3090767877 hasConceptScore W3090767877C119857082 @default.
- W3090767877 hasConceptScore W3090767877C12267149 @default.
- W3090767877 hasConceptScore W3090767877C124101348 @default.
- W3090767877 hasConceptScore W3090767877C153294291 @default.
- W3090767877 hasConceptScore W3090767877C154945302 @default.
- W3090767877 hasConceptScore W3090767877C161067210 @default.
- W3090767877 hasConceptScore W3090767877C179717631 @default.
- W3090767877 hasConceptScore W3090767877C205649164 @default.
- W3090767877 hasConceptScore W3090767877C21001229 @default.
- W3090767877 hasConceptScore W3090767877C41008148 @default.
- W3090767877 hasConceptScore W3090767877C50644808 @default.
- W3090767877 hasConceptScore W3090767877C52001869 @default.
- W3090767877 hasConceptScore W3090767877C60908668 @default.
- W3090767877 hasConceptScore W3090767877C82210777 @default.
- W3090767877 hasLocation W30907678771 @default.
- W3090767877 hasOpenAccess W3090767877 @default.
- W3090767877 hasPrimaryLocation W30907678771 @default.
- W3090767877 hasRelatedWork W10786582 @default.
- W3090767877 hasRelatedWork W13426584 @default.
- W3090767877 hasRelatedWork W3309110 @default.
- W3090767877 hasRelatedWork W5005022 @default.
- W3090767877 hasRelatedWork W5683678 @default.
- W3090767877 hasRelatedWork W621929 @default.
- W3090767877 hasRelatedWork W6552940 @default.
- W3090767877 hasRelatedWork W7465187 @default.
- W3090767877 hasRelatedWork W14468734 @default.
- W3090767877 hasRelatedWork W7759631 @default.
- W3090767877 isParatext "false" @default.
- W3090767877 isRetracted "false" @default.
- W3090767877 magId "3090767877" @default.
- W3090767877 workType "article" @default.