Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090813080> ?p ?o ?g. }
- W3090813080 abstract "Nowadays, the recognition of group activities is a significant problem, specially in video surveillance. It is increasingly important to have vision architectures that automatically allow timely recognition of group activities and predictions about them in order to make decisions. This paper proposes a computer vision architecture able to learn and recognise group activities using the movements of it in the scene. It is based on the Activity Description Vector (ADV), a descriptor able to represent the trajectory information of an image sequence as a collection of the local movements that occur in specific regions of the scene. The proposal evolves this descriptor towards the generation of images able to be the input queue of a two-stream convolutional neural network capable of robustly classifying group activities. Hence, this proposal, besides the use of trajectory analysis that allows a simple high level understanding of complex groups activities, takes advantage of the deep learning characteristics providing a robust architecture for multi-class recognition. The architecture has been evaluated and compared to other approaches using BEHAVE and INRIA dataset sequences obtaining great performance in the recognition of group activities." @default.
- W3090813080 created "2020-10-08" @default.
- W3090813080 creator A5044684709 @default.
- W3090813080 creator A5045870755 @default.
- W3090813080 creator A5049623161 @default.
- W3090813080 creator A5080320457 @default.
- W3090813080 date "2020-07-01" @default.
- W3090813080 modified "2023-10-16" @default.
- W3090813080 title "Deep Learning Architecture for Group Activity Recognition using Description of Local Motions" @default.
- W3090813080 cites W1624466393 @default.
- W3090813080 cites W1934910953 @default.
- W3090813080 cites W1963603065 @default.
- W3090813080 cites W1976857135 @default.
- W3090813080 cites W1978723123 @default.
- W3090813080 cites W1983705368 @default.
- W3090813080 cites W1990517717 @default.
- W3090813080 cites W1998025913 @default.
- W3090813080 cites W2019080172 @default.
- W3090813080 cites W2021004711 @default.
- W3090813080 cites W2032219231 @default.
- W3090813080 cites W2058586075 @default.
- W3090813080 cites W2073003236 @default.
- W3090813080 cites W2076269884 @default.
- W3090813080 cites W2078999139 @default.
- W3090813080 cites W2084830799 @default.
- W3090813080 cites W2101223341 @default.
- W3090813080 cites W2105594594 @default.
- W3090813080 cites W2110885456 @default.
- W3090813080 cites W2121899951 @default.
- W3090813080 cites W2141251974 @default.
- W3090813080 cites W2147953023 @default.
- W3090813080 cites W2155268664 @default.
- W3090813080 cites W2166322089 @default.
- W3090813080 cites W2168108030 @default.
- W3090813080 cites W2271991549 @default.
- W3090813080 cites W2497146383 @default.
- W3090813080 cites W2552950674 @default.
- W3090813080 cites W2584419447 @default.
- W3090813080 cites W2604690669 @default.
- W3090813080 cites W2747474452 @default.
- W3090813080 cites W2747695308 @default.
- W3090813080 cites W2765172670 @default.
- W3090813080 cites W2792966851 @default.
- W3090813080 cites W2793586828 @default.
- W3090813080 cites W2803974577 @default.
- W3090813080 cites W2804860796 @default.
- W3090813080 cites W2805613038 @default.
- W3090813080 cites W28988658 @default.
- W3090813080 cites W2901282482 @default.
- W3090813080 cites W2901960819 @default.
- W3090813080 cites W2919115771 @default.
- W3090813080 cites W2950568498 @default.
- W3090813080 cites W2972796901 @default.
- W3090813080 cites W3123784868 @default.
- W3090813080 cites W3125008066 @default.
- W3090813080 cites W87484560 @default.
- W3090813080 cites W892668003 @default.
- W3090813080 doi "https://doi.org/10.1109/ijcnn48605.2020.9207366" @default.
- W3090813080 hasPublicationYear "2020" @default.
- W3090813080 type Work @default.
- W3090813080 sameAs 3090813080 @default.
- W3090813080 citedByCount "3" @default.
- W3090813080 countsByYear W30908130802021 @default.
- W3090813080 countsByYear W30908130802022 @default.
- W3090813080 crossrefType "proceedings-article" @default.
- W3090813080 hasAuthorship W3090813080A5044684709 @default.
- W3090813080 hasAuthorship W3090813080A5045870755 @default.
- W3090813080 hasAuthorship W3090813080A5049623161 @default.
- W3090813080 hasAuthorship W3090813080A5080320457 @default.
- W3090813080 hasConcept C108583219 @default.
- W3090813080 hasConcept C118524514 @default.
- W3090813080 hasConcept C123657996 @default.
- W3090813080 hasConcept C145420912 @default.
- W3090813080 hasConcept C154945302 @default.
- W3090813080 hasConcept C166957645 @default.
- W3090813080 hasConcept C178790620 @default.
- W3090813080 hasConcept C185592680 @default.
- W3090813080 hasConcept C205649164 @default.
- W3090813080 hasConcept C2781311116 @default.
- W3090813080 hasConcept C2983025851 @default.
- W3090813080 hasConcept C33923547 @default.
- W3090813080 hasConcept C41008148 @default.
- W3090813080 hasConceptScore W3090813080C108583219 @default.
- W3090813080 hasConceptScore W3090813080C118524514 @default.
- W3090813080 hasConceptScore W3090813080C123657996 @default.
- W3090813080 hasConceptScore W3090813080C145420912 @default.
- W3090813080 hasConceptScore W3090813080C154945302 @default.
- W3090813080 hasConceptScore W3090813080C166957645 @default.
- W3090813080 hasConceptScore W3090813080C178790620 @default.
- W3090813080 hasConceptScore W3090813080C185592680 @default.
- W3090813080 hasConceptScore W3090813080C205649164 @default.
- W3090813080 hasConceptScore W3090813080C2781311116 @default.
- W3090813080 hasConceptScore W3090813080C2983025851 @default.
- W3090813080 hasConceptScore W3090813080C33923547 @default.
- W3090813080 hasConceptScore W3090813080C41008148 @default.
- W3090813080 hasLocation W30908130801 @default.
- W3090813080 hasOpenAccess W3090813080 @default.
- W3090813080 hasPrimaryLocation W30908130801 @default.
- W3090813080 hasRelatedWork W2383828164 @default.
- W3090813080 hasRelatedWork W2609031183 @default.