Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090921460> ?p ?o ?g. }
- W3090921460 abstract "Scrambling processes, which rapidly spread entanglement through many-body quantum systems, are difficult to investigate using standard techniques, but are relevant to quantum chaos and thermalization. In this Letter, we ask if quantum machine learning (QML) could be used to investigate such processes. We prove a no-go theorem for learning an unknown scrambling process with QML, showing that any variational ansatz is highly probable to have a barren plateau landscape, i.e., cost gradients that vanish exponentially in the system size. This implies that the required resources scale exponentially even when strategies to avoid such scaling (e.g., from ansatz-based barren plateaus or No-Free-Lunch theorems) are employed. Furthermore, we numerically and analytically extend our results to approximate scramblers. Hence, our work places generic limits on the learnability of unitaries when lacking prior information." @default.
- W3090921460 created "2020-10-08" @default.
- W3090921460 creator A5041875496 @default.
- W3090921460 creator A5054706598 @default.
- W3090921460 creator A5065899096 @default.
- W3090921460 creator A5071652167 @default.
- W3090921460 creator A5076225439 @default.
- W3090921460 creator A5088973719 @default.
- W3090921460 date "2021-05-12" @default.
- W3090921460 modified "2023-10-07" @default.
- W3090921460 title "Barren Plateaus Preclude Learning Scramblers" @default.
- W3090921460 cites W2089191553 @default.
- W3090921460 cites W2118301480 @default.
- W3090921460 cites W2125457426 @default.
- W3090921460 cites W2129872856 @default.
- W3090921460 cites W2161685427 @default.
- W3090921460 cites W2247548592 @default.
- W3090921460 cites W2257937122 @default.
- W3090921460 cites W2537703961 @default.
- W3090921460 cites W2559394418 @default.
- W3090921460 cites W2560677405 @default.
- W3090921460 cites W2781738013 @default.
- W3090921460 cites W2794444783 @default.
- W3090921460 cites W2805441291 @default.
- W3090921460 cites W2805957242 @default.
- W3090921460 cites W2811032035 @default.
- W3090921460 cites W2888208423 @default.
- W3090921460 cites W2897217696 @default.
- W3090921460 cites W2905003072 @default.
- W3090921460 cites W2921746574 @default.
- W3090921460 cites W2979788593 @default.
- W3090921460 cites W3004965358 @default.
- W3090921460 cites W3012234702 @default.
- W3090921460 cites W3022508877 @default.
- W3090921460 cites W3025398375 @default.
- W3090921460 cites W3026863321 @default.
- W3090921460 cites W3037318174 @default.
- W3090921460 cites W3100459566 @default.
- W3090921460 cites W3100597718 @default.
- W3090921460 cites W3100993317 @default.
- W3090921460 cites W3101545261 @default.
- W3090921460 cites W3101678819 @default.
- W3090921460 cites W3102909637 @default.
- W3090921460 cites W3103872322 @default.
- W3090921460 cites W3104022488 @default.
- W3090921460 cites W3105870134 @default.
- W3090921460 cites W3105877772 @default.
- W3090921460 cites W3105982350 @default.
- W3090921460 cites W3106051480 @default.
- W3090921460 cites W3112167980 @default.
- W3090921460 cites W3123208069 @default.
- W3090921460 cites W3136233239 @default.
- W3090921460 cites W3163320491 @default.
- W3090921460 doi "https://doi.org/10.1103/physrevlett.126.190501" @default.
- W3090921460 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34047576" @default.
- W3090921460 hasPublicationYear "2021" @default.
- W3090921460 type Work @default.
- W3090921460 sameAs 3090921460 @default.
- W3090921460 citedByCount "55" @default.
- W3090921460 countsByYear W30909214602020 @default.
- W3090921460 countsByYear W30909214602021 @default.
- W3090921460 countsByYear W30909214602022 @default.
- W3090921460 countsByYear W30909214602023 @default.
- W3090921460 crossrefType "journal-article" @default.
- W3090921460 hasAuthorship W3090921460A5041875496 @default.
- W3090921460 hasAuthorship W3090921460A5054706598 @default.
- W3090921460 hasAuthorship W3090921460A5065899096 @default.
- W3090921460 hasAuthorship W3090921460A5071652167 @default.
- W3090921460 hasAuthorship W3090921460A5076225439 @default.
- W3090921460 hasAuthorship W3090921460A5088973719 @default.
- W3090921460 hasBestOaLocation W30909214602 @default.
- W3090921460 hasConcept C11413529 @default.
- W3090921460 hasConcept C121040770 @default.
- W3090921460 hasConcept C121332964 @default.
- W3090921460 hasConcept C121864883 @default.
- W3090921460 hasConcept C130979935 @default.
- W3090921460 hasConcept C15359245 @default.
- W3090921460 hasConcept C154945302 @default.
- W3090921460 hasConcept C182548165 @default.
- W3090921460 hasConcept C2524010 @default.
- W3090921460 hasConcept C2777723229 @default.
- W3090921460 hasConcept C33923547 @default.
- W3090921460 hasConcept C41008148 @default.
- W3090921460 hasConcept C62520636 @default.
- W3090921460 hasConcept C84114770 @default.
- W3090921460 hasConcept C99844830 @default.
- W3090921460 hasConceptScore W3090921460C11413529 @default.
- W3090921460 hasConceptScore W3090921460C121040770 @default.
- W3090921460 hasConceptScore W3090921460C121332964 @default.
- W3090921460 hasConceptScore W3090921460C121864883 @default.
- W3090921460 hasConceptScore W3090921460C130979935 @default.
- W3090921460 hasConceptScore W3090921460C15359245 @default.
- W3090921460 hasConceptScore W3090921460C154945302 @default.
- W3090921460 hasConceptScore W3090921460C182548165 @default.
- W3090921460 hasConceptScore W3090921460C2524010 @default.
- W3090921460 hasConceptScore W3090921460C2777723229 @default.
- W3090921460 hasConceptScore W3090921460C33923547 @default.
- W3090921460 hasConceptScore W3090921460C41008148 @default.
- W3090921460 hasConceptScore W3090921460C62520636 @default.
- W3090921460 hasConceptScore W3090921460C84114770 @default.