Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090927654> ?p ?o ?g. }
- W3090927654 endingPage "8" @default.
- W3090927654 startingPage "1" @default.
- W3090927654 abstract "There is a scarcity in tools to predict postpartum depression (PPD). We propose a machine learning framework for PPD risk prediction using data extracted from electronic health records (EHRs). Two EHR datasets containing data on 15,197 women from 2015 to 2018 at a single site, and 53,972 women from 2004 to 2017 at multiple sites were used as development and validation sets, respectively, to construct the PPD risk prediction model. The primary outcome was a diagnosis of PPD within 1 year following childbirth. A framework of data extraction, processing, and machine learning was implemented to select a minimal list of features from the EHR datasets to ensure model performance and to enable future point-of-care risk prediction. The best-performing model uses from clinical features related to mental health history, medical comorbidity, obstetric complications, medication prescription orders, and patient demographic characteristics. The model performances as measured by area under the receiver operating characteristic curve (AUC) are 0.937 (95% CI 0.912 - 0.962) and 0.886 (95% CI 0.879-0.893) in the development and validation datasets, respectively. The model performances were consistent when tested using data ending at multiple time periods during pregnancy and at childbirth. The prevalence of PPD in the study data represented a treatment prevalence and is likely lower than the illness prevalence. EHRs and machine learning offer the ability to identify women at risk for PPD early in their pregnancy. This may facilitate scalable and timely prevention and intervention, reducing negative outcomes and the associated burden." @default.
- W3090927654 created "2020-10-08" @default.
- W3090927654 creator A5019883192 @default.
- W3090927654 creator A5049188619 @default.
- W3090927654 creator A5051691741 @default.
- W3090927654 creator A5060593062 @default.
- W3090927654 creator A5066250488 @default.
- W3090927654 date "2021-01-01" @default.
- W3090927654 modified "2023-10-18" @default.
- W3090927654 title "Development and validation of a machine learning algorithm for predicting the risk of postpartum depression among pregnant women" @default.
- W3090927654 cites W1927417898 @default.
- W3090927654 cites W1969755793 @default.
- W3090927654 cites W1971654961 @default.
- W3090927654 cites W1996026118 @default.
- W3090927654 cites W2013126628 @default.
- W3090927654 cites W2023249107 @default.
- W3090927654 cites W2041079317 @default.
- W3090927654 cites W2042378472 @default.
- W3090927654 cites W2049222211 @default.
- W3090927654 cites W2049265876 @default.
- W3090927654 cites W2051519772 @default.
- W3090927654 cites W2055689655 @default.
- W3090927654 cites W2059099031 @default.
- W3090927654 cites W2096485542 @default.
- W3090927654 cites W2102941960 @default.
- W3090927654 cites W2104302525 @default.
- W3090927654 cites W2108609361 @default.
- W3090927654 cites W2128302489 @default.
- W3090927654 cites W2149264570 @default.
- W3090927654 cites W2155653793 @default.
- W3090927654 cites W2157825442 @default.
- W3090927654 cites W2170223588 @default.
- W3090927654 cites W2204773191 @default.
- W3090927654 cites W2217303271 @default.
- W3090927654 cites W2236695393 @default.
- W3090927654 cites W2277759560 @default.
- W3090927654 cites W2290228208 @default.
- W3090927654 cites W2395172628 @default.
- W3090927654 cites W2608132671 @default.
- W3090927654 cites W2610834520 @default.
- W3090927654 cites W2794431233 @default.
- W3090927654 cites W2799900537 @default.
- W3090927654 cites W2802792529 @default.
- W3090927654 cites W2810659392 @default.
- W3090927654 cites W2889828725 @default.
- W3090927654 cites W2891483586 @default.
- W3090927654 cites W2898090599 @default.
- W3090927654 cites W2899876413 @default.
- W3090927654 cites W2910262817 @default.
- W3090927654 cites W2911462778 @default.
- W3090927654 cites W2913785089 @default.
- W3090927654 cites W2940686655 @default.
- W3090927654 cites W2964696298 @default.
- W3090927654 cites W3003864713 @default.
- W3090927654 cites W3098949126 @default.
- W3090927654 cites W34678172 @default.
- W3090927654 cites W4239700635 @default.
- W3090927654 cites W4244042864 @default.
- W3090927654 cites W4252692240 @default.
- W3090927654 doi "https://doi.org/10.1016/j.jad.2020.09.113" @default.
- W3090927654 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7738412" @default.
- W3090927654 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33035748" @default.
- W3090927654 hasPublicationYear "2021" @default.
- W3090927654 type Work @default.
- W3090927654 sameAs 3090927654 @default.
- W3090927654 citedByCount "47" @default.
- W3090927654 countsByYear W30909276542020 @default.
- W3090927654 countsByYear W30909276542021 @default.
- W3090927654 countsByYear W30909276542022 @default.
- W3090927654 countsByYear W30909276542023 @default.
- W3090927654 crossrefType "journal-article" @default.
- W3090927654 hasAuthorship W3090927654A5019883192 @default.
- W3090927654 hasAuthorship W3090927654A5049188619 @default.
- W3090927654 hasAuthorship W3090927654A5051691741 @default.
- W3090927654 hasAuthorship W3090927654A5060593062 @default.
- W3090927654 hasAuthorship W3090927654A5066250488 @default.
- W3090927654 hasBestOaLocation W30909276541 @default.
- W3090927654 hasConcept C11413529 @default.
- W3090927654 hasConcept C119857082 @default.
- W3090927654 hasConcept C124101348 @default.
- W3090927654 hasConcept C126838900 @default.
- W3090927654 hasConcept C154945302 @default.
- W3090927654 hasConcept C195910791 @default.
- W3090927654 hasConcept C2779234561 @default.
- W3090927654 hasConcept C2779703513 @default.
- W3090927654 hasConcept C2780262536 @default.
- W3090927654 hasConcept C41008148 @default.
- W3090927654 hasConcept C54355233 @default.
- W3090927654 hasConcept C58471807 @default.
- W3090927654 hasConcept C71924100 @default.
- W3090927654 hasConcept C86803240 @default.
- W3090927654 hasConceptScore W3090927654C11413529 @default.
- W3090927654 hasConceptScore W3090927654C119857082 @default.
- W3090927654 hasConceptScore W3090927654C124101348 @default.
- W3090927654 hasConceptScore W3090927654C126838900 @default.
- W3090927654 hasConceptScore W3090927654C154945302 @default.
- W3090927654 hasConceptScore W3090927654C195910791 @default.
- W3090927654 hasConceptScore W3090927654C2779234561 @default.