Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090947871> ?p ?o ?g. }
- W3090947871 abstract "Abstract Background Machine learning has been utilized to predict cancer drug response from multi-omics data generated from sensitivities of cancer cell lines to different therapeutic compounds. Here, we build machine learning models using gene expression data from patients’ primary tumor tissues to predict whether a patient will respond positively or negatively to two chemotherapeutics: 5-Fluorouracil and Gemcitabine. Results We focused on 5-Fluorouracil and Gemcitabine because based on our exclusion criteria, they provide the largest numbers of patients within TCGA. Normalized gene expression data were clustered and used as the input features for the study. We used matching clinical trial data to ascertain the response of these patients via multiple classification methods. Multiple clustering and classification methods were compared for prediction accuracy of drug response. Clara and random forest were found to be the best clustering and classification methods, respectively. The results show our models predict with up to 86% accuracy; despite the study’s limitation of sample size. We also found the genes most informative for predicting drug response were enriched in well-known cancer signaling pathways and highlighted their potential significance in chemotherapy prognosis. Conclusions Primary tumor gene expression is a good predictor of cancer drug response. Investment in larger datasets containing both patient gene expression and drug response is needed to support future work of machine learning models. Ultimately, such predictive models may aid oncologists with making critical treatment decisions." @default.
- W3090947871 created "2020-10-08" @default.
- W3090947871 creator A5041343853 @default.
- W3090947871 creator A5053481424 @default.
- W3090947871 creator A5061645824 @default.
- W3090947871 creator A5063883523 @default.
- W3090947871 date "2020-09-01" @default.
- W3090947871 modified "2023-10-18" @default.
- W3090947871 title "Leveraging TCGA gene expression data to build predictive models for cancer drug response" @default.
- W3090947871 cites W1495645148 @default.
- W3090947871 cites W1965917470 @default.
- W3090947871 cites W1992045522 @default.
- W3090947871 cites W1998871699 @default.
- W3090947871 cites W2012047645 @default.
- W3090947871 cites W2018663224 @default.
- W3090947871 cites W2041935553 @default.
- W3090947871 cites W2043398720 @default.
- W3090947871 cites W2061546218 @default.
- W3090947871 cites W2082503527 @default.
- W3090947871 cites W2108933868 @default.
- W3090947871 cites W2114633835 @default.
- W3090947871 cites W2118742454 @default.
- W3090947871 cites W2135187880 @default.
- W3090947871 cites W2142495011 @default.
- W3090947871 cites W2150593711 @default.
- W3090947871 cites W2152742558 @default.
- W3090947871 cites W2158485828 @default.
- W3090947871 cites W2161428561 @default.
- W3090947871 cites W2271479646 @default.
- W3090947871 cites W2321692135 @default.
- W3090947871 cites W2501016862 @default.
- W3090947871 cites W2606743538 @default.
- W3090947871 cites W2766708596 @default.
- W3090947871 cites W2796153844 @default.
- W3090947871 cites W2807463161 @default.
- W3090947871 cites W2893531376 @default.
- W3090947871 cites W2896725104 @default.
- W3090947871 cites W2900606149 @default.
- W3090947871 cites W2911969472 @default.
- W3090947871 cites W2948897453 @default.
- W3090947871 cites W2950063908 @default.
- W3090947871 cites W2962938532 @default.
- W3090947871 cites W2963046727 @default.
- W3090947871 cites W4256060553 @default.
- W3090947871 cites W808646684 @default.
- W3090947871 doi "https://doi.org/10.1186/s12859-020-03690-4" @default.
- W3090947871 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7526215" @default.
- W3090947871 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32998700" @default.
- W3090947871 hasPublicationYear "2020" @default.
- W3090947871 type Work @default.
- W3090947871 sameAs 3090947871 @default.
- W3090947871 citedByCount "22" @default.
- W3090947871 countsByYear W30909478712020 @default.
- W3090947871 countsByYear W30909478712021 @default.
- W3090947871 countsByYear W30909478712022 @default.
- W3090947871 countsByYear W30909478712023 @default.
- W3090947871 crossrefType "journal-article" @default.
- W3090947871 hasAuthorship W3090947871A5041343853 @default.
- W3090947871 hasAuthorship W3090947871A5053481424 @default.
- W3090947871 hasAuthorship W3090947871A5061645824 @default.
- W3090947871 hasAuthorship W3090947871A5063883523 @default.
- W3090947871 hasBestOaLocation W30909478711 @default.
- W3090947871 hasConcept C104317684 @default.
- W3090947871 hasConcept C119857082 @default.
- W3090947871 hasConcept C142724271 @default.
- W3090947871 hasConcept C143998085 @default.
- W3090947871 hasConcept C150194340 @default.
- W3090947871 hasConcept C154945302 @default.
- W3090947871 hasConcept C163763905 @default.
- W3090947871 hasConcept C169258074 @default.
- W3090947871 hasConcept C18431079 @default.
- W3090947871 hasConcept C2780035454 @default.
- W3090947871 hasConcept C2994119904 @default.
- W3090947871 hasConcept C41008148 @default.
- W3090947871 hasConcept C55493867 @default.
- W3090947871 hasConcept C60644358 @default.
- W3090947871 hasConcept C70721500 @default.
- W3090947871 hasConcept C71924100 @default.
- W3090947871 hasConcept C73555534 @default.
- W3090947871 hasConcept C86803240 @default.
- W3090947871 hasConcept C95371953 @default.
- W3090947871 hasConcept C98274493 @default.
- W3090947871 hasConceptScore W3090947871C104317684 @default.
- W3090947871 hasConceptScore W3090947871C119857082 @default.
- W3090947871 hasConceptScore W3090947871C142724271 @default.
- W3090947871 hasConceptScore W3090947871C143998085 @default.
- W3090947871 hasConceptScore W3090947871C150194340 @default.
- W3090947871 hasConceptScore W3090947871C154945302 @default.
- W3090947871 hasConceptScore W3090947871C163763905 @default.
- W3090947871 hasConceptScore W3090947871C169258074 @default.
- W3090947871 hasConceptScore W3090947871C18431079 @default.
- W3090947871 hasConceptScore W3090947871C2780035454 @default.
- W3090947871 hasConceptScore W3090947871C2994119904 @default.
- W3090947871 hasConceptScore W3090947871C41008148 @default.
- W3090947871 hasConceptScore W3090947871C55493867 @default.
- W3090947871 hasConceptScore W3090947871C60644358 @default.
- W3090947871 hasConceptScore W3090947871C70721500 @default.
- W3090947871 hasConceptScore W3090947871C71924100 @default.
- W3090947871 hasConceptScore W3090947871C73555534 @default.
- W3090947871 hasConceptScore W3090947871C86803240 @default.