Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090965942> ?p ?o ?g. }
- W3090965942 endingPage "451" @default.
- W3090965942 startingPage "427" @default.
- W3090965942 abstract "Dissimilatory iron reduction (DIR) plays an essential role in biogeochemical Fe cycling in anoxic environments. At near-neutral pH, in both biotic and abiotic systems, aqueous Fe(II) (Fe(II)aq) interacts with reactive ferric (hydr)oxides via electron transfer and atom exchange that is catalyzed by large amounts of sorbed Fe(II). This may result in substantial Fe isotope exchange, which, at equilibrium, produces up to a ∼4‰ 56Fe/54Fe fractionation between coexisting oxide/hydroxide and Fe(II)aq, depending on mineralogy. The role of biology in such systems has been interpreted to lie in the production of Fe(II) rather than a specific “vital” effect, such as enzymatic and kinetic processes. Under acidic abiotic conditions, however, the lack of sorbed Fe(II) generates little Fe isotope exchange, and, by extension, it has been expected that little exchange would occur during DIR at low pH if sorbed Fe(II) is the key component for catalyzing isotopic exchange. In this study, we explored the extent and mechanism of Fe isotope exchange between Fe(II)aq and ferric hydroxides (ferrihydrite and goethite), including determination of the 56Fe/54Fe fractionations during DIR by Acidianus strain DS80 at pH ∼ 3.0 and 80 °C, over 19 days of incubation. Significant Fe(III) reduction occurred for both minerals along with large changes in Fe isotope compositions for Fe(II)aq, indicating Fe isotope exchange. Solid-phase extractions using HCl confirmed a lack of sorbed Fe(II), which suggests that a mechanism other than sorption is required to catalyze Fe isotope exchange during DIR at low pH. Reactive Fe(III) (Fe(III)reac) extracted from the mineral surface allowed for the calculation of the Fe pools that underwent isotopic exchange. A total of ∼20% of goethite and ∼60% of ferrihydrite underwent isotopic exchange over 19 days. For goethite from biotic experiments, we calculate a Fe(III)reac-Fe(II)aq fractionation factor of 1.57 ± 0.52‰, which is larger than the abiotic equilibrium fractionation factor (∼0.73‰ at 80 °C). This result is consistent with previous work on DIR of goethite at neutral pH, where a fractionation factor larger than equilibrium was interpreted to reflect an isotopically distinct “distorted surface layer” of goethite produced during exchange with Fe(II)aq. In contrast to goethite, the difference between the Fe(III)reac-Fe(II)aq fractionation factor for ferrihydrite from our biotic reactors (2.91 ± 0.40‰) and the abiotic equilibrium fractionation factor (∼2.28‰ at 80 °C, under silica-free conditions) is smaller. Ultimately, the contrast in the extent of Fe isotope exchange between biotic and abiotic experiments emphasizes the importance of biology in promoting Fe isotope exchange in acidic systems. We speculate that the unique role of biology at low pH in catalyzing Fe isotope exchange, not seen in equivalent abiotic systems, must lie in the transport of electrons to the ferric hydroxide surface that produces Fe(II) atoms in situ. This suggests that isotopic exchange occurs on an atom-by-atom basis as Fe(III) is reduced to Fe(II), followed by the release of Fe(II) into solution. This study demonstrates that significant variations in Fe isotope compositions may be uniquely produced in acidic environments where microbial Fe cycling occurs via DIR, compared to minor isotopic variations observed previously in acidic abiotic systems." @default.
- W3090965942 created "2020-10-08" @default.
- W3090965942 creator A5000007230 @default.
- W3090965942 creator A5006977537 @default.
- W3090965942 creator A5032863816 @default.
- W3090965942 creator A5064359021 @default.
- W3090965942 creator A5072895378 @default.
- W3090965942 date "2021-01-01" @default.
- W3090965942 modified "2023-10-16" @default.
- W3090965942 title "Stable Fe isotope fractionation during dissimilatory Fe(III) reduction by a thermoacidophile in acidic hydrothermal environments" @default.
- W3090965942 cites W1503861105 @default.
- W3090965942 cites W1560853515 @default.
- W3090965942 cites W1626856962 @default.
- W3090965942 cites W1672014912 @default.
- W3090965942 cites W1935199567 @default.
- W3090965942 cites W1967199319 @default.
- W3090965942 cites W1970170280 @default.
- W3090965942 cites W1970591906 @default.
- W3090965942 cites W1972114713 @default.
- W3090965942 cites W1973915158 @default.
- W3090965942 cites W1984854172 @default.
- W3090965942 cites W1987573245 @default.
- W3090965942 cites W1987716298 @default.
- W3090965942 cites W1988009330 @default.
- W3090965942 cites W1990056523 @default.
- W3090965942 cites W1994328828 @default.
- W3090965942 cites W1996339982 @default.
- W3090965942 cites W1997476054 @default.
- W3090965942 cites W2007640769 @default.
- W3090965942 cites W2009222459 @default.
- W3090965942 cites W2012930274 @default.
- W3090965942 cites W2016457559 @default.
- W3090965942 cites W2020353827 @default.
- W3090965942 cites W2020579560 @default.
- W3090965942 cites W2024731134 @default.
- W3090965942 cites W2026699540 @default.
- W3090965942 cites W2026763738 @default.
- W3090965942 cites W2027333732 @default.
- W3090965942 cites W2028492105 @default.
- W3090965942 cites W2029493649 @default.
- W3090965942 cites W2031821849 @default.
- W3090965942 cites W2035137218 @default.
- W3090965942 cites W2039172699 @default.
- W3090965942 cites W2040901305 @default.
- W3090965942 cites W2051830721 @default.
- W3090965942 cites W2053515269 @default.
- W3090965942 cites W2053561848 @default.
- W3090965942 cites W2055134820 @default.
- W3090965942 cites W2057970211 @default.
- W3090965942 cites W2058484309 @default.
- W3090965942 cites W2061338944 @default.
- W3090965942 cites W2064721136 @default.
- W3090965942 cites W2070912856 @default.
- W3090965942 cites W2071704543 @default.
- W3090965942 cites W2074753263 @default.
- W3090965942 cites W2074797379 @default.
- W3090965942 cites W2075090777 @default.
- W3090965942 cites W2078616161 @default.
- W3090965942 cites W2083650883 @default.
- W3090965942 cites W2087708777 @default.
- W3090965942 cites W2088856953 @default.
- W3090965942 cites W2091913250 @default.
- W3090965942 cites W2098704557 @default.
- W3090965942 cites W2100208357 @default.
- W3090965942 cites W2105510784 @default.
- W3090965942 cites W2107297476 @default.
- W3090965942 cites W2111569769 @default.
- W3090965942 cites W2114163536 @default.
- W3090965942 cites W2120115472 @default.
- W3090965942 cites W2120735445 @default.
- W3090965942 cites W2123057945 @default.
- W3090965942 cites W2127765785 @default.
- W3090965942 cites W2128185490 @default.
- W3090965942 cites W2130008472 @default.
- W3090965942 cites W2134600004 @default.
- W3090965942 cites W2139633475 @default.
- W3090965942 cites W2141236055 @default.
- W3090965942 cites W2144243013 @default.
- W3090965942 cites W2144909731 @default.
- W3090965942 cites W2146376665 @default.
- W3090965942 cites W2148346745 @default.
- W3090965942 cites W2149110469 @default.
- W3090965942 cites W2151911924 @default.
- W3090965942 cites W2155021855 @default.
- W3090965942 cites W2160554494 @default.
- W3090965942 cites W2167628750 @default.
- W3090965942 cites W2167881866 @default.
- W3090965942 cites W2170887597 @default.
- W3090965942 cites W2313281416 @default.
- W3090965942 cites W2317381892 @default.
- W3090965942 cites W2320106949 @default.
- W3090965942 cites W2323650771 @default.
- W3090965942 cites W2326649112 @default.
- W3090965942 cites W2411328711 @default.
- W3090965942 cites W2470854596 @default.
- W3090965942 cites W2518467579 @default.
- W3090965942 cites W2522423596 @default.
- W3090965942 cites W2610986297 @default.