Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090982778> ?p ?o ?g. }
- W3090982778 endingPage "108500" @default.
- W3090982778 startingPage "108500" @default.
- W3090982778 abstract "Abstract Existing deep learning methods commonly requires massive labeled data for compound fault diagnosis, which is difficult and time-consuming to collect in the real application. This paper presents a novel decoupling attentional residual network for compound fault diagnosis. Original signal is processed by the short-time Fourier transform and its output is fed into the subsequent network. Then, attention modules are introduced into the model to selectively emphasize certain features. Additionally, a multi-label decoupling classifier is designed to accurately decouple and identify the compound faults. Besides, active learning approach is introduced to achieve the same results using few compound faults samples. The proposed method was validated on our bearing dataset, which shows that it can reach 100% overall accuracy. Moreover, the proposed method achieves the same diagnosis performance by utilizing only 150 labeled compound fault samples as using all 1200 labeled samples, which greatly reduces the labeling workload of domain experts." @default.
- W3090982778 created "2020-10-08" @default.
- W3090982778 creator A5021632916 @default.
- W3090982778 creator A5021977927 @default.
- W3090982778 creator A5068216488 @default.
- W3090982778 creator A5076458977 @default.
- W3090982778 date "2021-03-01" @default.
- W3090982778 modified "2023-10-13" @default.
- W3090982778 title "Actual bearing compound fault diagnosis based on active learning and decoupling attentional residual network" @default.
- W3090982778 cites W1199827394 @default.
- W3090982778 cites W1804462556 @default.
- W3090982778 cites W2025886370 @default.
- W3090982778 cites W2028119131 @default.
- W3090982778 cites W2053443947 @default.
- W3090982778 cites W2060304859 @default.
- W3090982778 cites W2066980082 @default.
- W3090982778 cites W2107074288 @default.
- W3090982778 cites W2130695501 @default.
- W3090982778 cites W2191482051 @default.
- W3090982778 cites W2274246713 @default.
- W3090982778 cites W2287972354 @default.
- W3090982778 cites W2291264318 @default.
- W3090982778 cites W2323403147 @default.
- W3090982778 cites W2398426870 @default.
- W3090982778 cites W2480364715 @default.
- W3090982778 cites W2583356199 @default.
- W3090982778 cites W2594265129 @default.
- W3090982778 cites W2601590138 @default.
- W3090982778 cites W2765828944 @default.
- W3090982778 cites W2767234670 @default.
- W3090982778 cites W2770183464 @default.
- W3090982778 cites W2783074568 @default.
- W3090982778 cites W2791036512 @default.
- W3090982778 cites W2791694051 @default.
- W3090982778 cites W2799599955 @default.
- W3090982778 cites W2802012801 @default.
- W3090982778 cites W2892702025 @default.
- W3090982778 cites W2897658618 @default.
- W3090982778 cites W2915684573 @default.
- W3090982778 cites W2917353266 @default.
- W3090982778 cites W2943467239 @default.
- W3090982778 cites W2972103974 @default.
- W3090982778 cites W2979323067 @default.
- W3090982778 cites W2984660013 @default.
- W3090982778 cites W2989881315 @default.
- W3090982778 cites W2997578981 @default.
- W3090982778 cites W3035588524 @default.
- W3090982778 doi "https://doi.org/10.1016/j.measurement.2020.108500" @default.
- W3090982778 hasPublicationYear "2021" @default.
- W3090982778 type Work @default.
- W3090982778 sameAs 3090982778 @default.
- W3090982778 citedByCount "73" @default.
- W3090982778 countsByYear W30909827782021 @default.
- W3090982778 countsByYear W30909827782022 @default.
- W3090982778 countsByYear W30909827782023 @default.
- W3090982778 crossrefType "journal-article" @default.
- W3090982778 hasAuthorship W3090982778A5021632916 @default.
- W3090982778 hasAuthorship W3090982778A5021977927 @default.
- W3090982778 hasAuthorship W3090982778A5068216488 @default.
- W3090982778 hasAuthorship W3090982778A5076458977 @default.
- W3090982778 hasConcept C11413529 @default.
- W3090982778 hasConcept C127313418 @default.
- W3090982778 hasConcept C127413603 @default.
- W3090982778 hasConcept C133731056 @default.
- W3090982778 hasConcept C154945302 @default.
- W3090982778 hasConcept C155512373 @default.
- W3090982778 hasConcept C165205528 @default.
- W3090982778 hasConcept C175551986 @default.
- W3090982778 hasConcept C199978012 @default.
- W3090982778 hasConcept C205606062 @default.
- W3090982778 hasConcept C26001220 @default.
- W3090982778 hasConcept C2775924081 @default.
- W3090982778 hasConcept C41008148 @default.
- W3090982778 hasConcept C47446073 @default.
- W3090982778 hasConceptScore W3090982778C11413529 @default.
- W3090982778 hasConceptScore W3090982778C127313418 @default.
- W3090982778 hasConceptScore W3090982778C127413603 @default.
- W3090982778 hasConceptScore W3090982778C133731056 @default.
- W3090982778 hasConceptScore W3090982778C154945302 @default.
- W3090982778 hasConceptScore W3090982778C155512373 @default.
- W3090982778 hasConceptScore W3090982778C165205528 @default.
- W3090982778 hasConceptScore W3090982778C175551986 @default.
- W3090982778 hasConceptScore W3090982778C199978012 @default.
- W3090982778 hasConceptScore W3090982778C205606062 @default.
- W3090982778 hasConceptScore W3090982778C26001220 @default.
- W3090982778 hasConceptScore W3090982778C2775924081 @default.
- W3090982778 hasConceptScore W3090982778C41008148 @default.
- W3090982778 hasConceptScore W3090982778C47446073 @default.
- W3090982778 hasFunder F4320321001 @default.
- W3090982778 hasFunder F4320335777 @default.
- W3090982778 hasLocation W30909827781 @default.
- W3090982778 hasOpenAccess W3090982778 @default.
- W3090982778 hasPrimaryLocation W30909827781 @default.
- W3090982778 hasRelatedWork W2351391969 @default.
- W3090982778 hasRelatedWork W2353036567 @default.
- W3090982778 hasRelatedWork W2365528051 @default.
- W3090982778 hasRelatedWork W2368489897 @default.
- W3090982778 hasRelatedWork W2374956606 @default.