Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091038948> ?p ?o ?g. }
- W3091038948 endingPage "2429" @default.
- W3091038948 startingPage "2417" @default.
- W3091038948 abstract "Reasonable bus timetable can reduce the operating costs of bus company and improve the quality of bus services. A data-driven method is proposed to optimize bus timetable in this study. Firstly, a bi-objective optimization model is constructed considering minimize the total waiting time of passengers and the departure times of bus company. Then, Global Positioning System (GPS) trajectories of buses and passenger information collected from Smart Card are fused and applied to calculate the key parameters or variables in optimization model, including time-dependent travel time, bus dwell time and passenger volume. Finally, by adopting a specific coding scheme, an improved Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is designed to quickly search Pareto optimal solutions. Furthermore, an experiment is conducted in Beijing city from one bus line to validate the effectiveness of the proposed method. Comparing with empirical scheduling method and traditional single-objective optimization base on GA, the results show that the proposed model could quickly provide high-quality and reasonable timetable schemes for the administrator in urban transit system." @default.
- W3091038948 created "2020-10-08" @default.
- W3091038948 creator A5001703908 @default.
- W3091038948 creator A5012268687 @default.
- W3091038948 creator A5043011100 @default.
- W3091038948 creator A5077763192 @default.
- W3091038948 creator A5089816295 @default.
- W3091038948 date "2021-04-01" @default.
- W3091038948 modified "2023-10-17" @default.
- W3091038948 title "A Data-Driven Timetable Optimization of Urban Bus Line Based on Multi-Objective Genetic Algorithm" @default.
- W3091038948 cites W1970279434 @default.
- W3091038948 cites W1972922866 @default.
- W3091038948 cites W1992743441 @default.
- W3091038948 cites W2007206842 @default.
- W3091038948 cites W2020320008 @default.
- W3091038948 cites W2041424945 @default.
- W3091038948 cites W2051693194 @default.
- W3091038948 cites W2077613353 @default.
- W3091038948 cites W2082697994 @default.
- W3091038948 cites W2085002156 @default.
- W3091038948 cites W2091907204 @default.
- W3091038948 cites W2126105956 @default.
- W3091038948 cites W2147608109 @default.
- W3091038948 cites W2155268449 @default.
- W3091038948 cites W2277189294 @default.
- W3091038948 cites W2277238356 @default.
- W3091038948 cites W2282947270 @default.
- W3091038948 cites W2460369218 @default.
- W3091038948 cites W2549373885 @default.
- W3091038948 cites W2585059220 @default.
- W3091038948 cites W2585427122 @default.
- W3091038948 cites W2606105273 @default.
- W3091038948 cites W2803595568 @default.
- W3091038948 cites W2804641984 @default.
- W3091038948 cites W2872383673 @default.
- W3091038948 cites W2884167592 @default.
- W3091038948 cites W2885912929 @default.
- W3091038948 cites W2895987724 @default.
- W3091038948 cites W2899721843 @default.
- W3091038948 cites W2915564669 @default.
- W3091038948 cites W2944023643 @default.
- W3091038948 cites W2947993581 @default.
- W3091038948 cites W2948617822 @default.
- W3091038948 cites W2949978034 @default.
- W3091038948 cites W2998025604 @default.
- W3091038948 doi "https://doi.org/10.1109/tits.2020.3025031" @default.
- W3091038948 hasPublicationYear "2021" @default.
- W3091038948 type Work @default.
- W3091038948 sameAs 3091038948 @default.
- W3091038948 citedByCount "27" @default.
- W3091038948 countsByYear W30910389482021 @default.
- W3091038948 countsByYear W30910389482022 @default.
- W3091038948 countsByYear W30910389482023 @default.
- W3091038948 crossrefType "journal-article" @default.
- W3091038948 hasAuthorship W3091038948A5001703908 @default.
- W3091038948 hasAuthorship W3091038948A5012268687 @default.
- W3091038948 hasAuthorship W3091038948A5043011100 @default.
- W3091038948 hasAuthorship W3091038948A5077763192 @default.
- W3091038948 hasAuthorship W3091038948A5089816295 @default.
- W3091038948 hasConcept C105795698 @default.
- W3091038948 hasConcept C111696304 @default.
- W3091038948 hasConcept C11413529 @default.
- W3091038948 hasConcept C119857082 @default.
- W3091038948 hasConcept C126255220 @default.
- W3091038948 hasConcept C127413603 @default.
- W3091038948 hasConcept C137635306 @default.
- W3091038948 hasConcept C151637689 @default.
- W3091038948 hasConcept C17744445 @default.
- W3091038948 hasConcept C179518139 @default.
- W3091038948 hasConcept C191935318 @default.
- W3091038948 hasConcept C199539241 @default.
- W3091038948 hasConcept C206729178 @default.
- W3091038948 hasConcept C21547014 @default.
- W3091038948 hasConcept C2778304055 @default.
- W3091038948 hasConcept C33923547 @default.
- W3091038948 hasConcept C41008148 @default.
- W3091038948 hasConcept C68781425 @default.
- W3091038948 hasConcept C70410870 @default.
- W3091038948 hasConcept C71924100 @default.
- W3091038948 hasConcept C79403827 @default.
- W3091038948 hasConcept C8880873 @default.
- W3091038948 hasConceptScore W3091038948C105795698 @default.
- W3091038948 hasConceptScore W3091038948C111696304 @default.
- W3091038948 hasConceptScore W3091038948C11413529 @default.
- W3091038948 hasConceptScore W3091038948C119857082 @default.
- W3091038948 hasConceptScore W3091038948C126255220 @default.
- W3091038948 hasConceptScore W3091038948C127413603 @default.
- W3091038948 hasConceptScore W3091038948C137635306 @default.
- W3091038948 hasConceptScore W3091038948C151637689 @default.
- W3091038948 hasConceptScore W3091038948C17744445 @default.
- W3091038948 hasConceptScore W3091038948C179518139 @default.
- W3091038948 hasConceptScore W3091038948C191935318 @default.
- W3091038948 hasConceptScore W3091038948C199539241 @default.
- W3091038948 hasConceptScore W3091038948C206729178 @default.
- W3091038948 hasConceptScore W3091038948C21547014 @default.
- W3091038948 hasConceptScore W3091038948C2778304055 @default.
- W3091038948 hasConceptScore W3091038948C33923547 @default.
- W3091038948 hasConceptScore W3091038948C41008148 @default.