Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091203504> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3091203504 abstract "The gamma process is known for its power to capture the temporal variability of deterioration over time. It is one of the most popular stochastic processes in reliability theory. The power law is the most common non-linear shape function for modeling degradation by the gamma process. Also, two classical estimation methods, namely the maximum likelihood method and the method of moments, have been developed in various applications of the gamma process as a degradation model. However, while some studies assumed that the exponent of the power law is known and modeled a non-homogeneous gamma process, others only considered the homogeneous gamma process. Also, the asymptotic properties of these estimators are not often studied. In particular, the maximum likelihood method. In this study, we modeled degradation by both the homogeneous and non-homogeneous gamma processes with a power law shape function. For each model, we considered two methods of parameter estimations, precisely the maximum likelihood method and the method of moments. Furthermore, we provided the theoretical and numerical results of these estimators for different sets of observations and parameters. We have shown that the estimates of the parameters are better with the maximum likelihood method than the method of moments. Further, the maximum likelihood estimator is asymptotically unbiased, consistent, and efficient, which validates the theoretical results. Also, initializing the maximum likelihood estimator with the estimates of the method of moments improves the quality of the estimates, depending on the coefficient as well as the convexity of the shape function}. Lastly, the convexity of the shape function also influences the quality of the estimates. To be more precise, the estimates are better for concave and convex shape functions than for a linear one." @default.
- W3091203504 created "2020-10-08" @default.
- W3091203504 creator A5065036656 @default.
- W3091203504 date "2020-08-28" @default.
- W3091203504 modified "2023-09-28" @default.
- W3091203504 title "Modeling and Statistical Inference of a System Degrading According to a Gamma Process" @default.
- W3091203504 hasPublicationYear "2020" @default.
- W3091203504 type Work @default.
- W3091203504 sameAs 3091203504 @default.
- W3091203504 citedByCount "0" @default.
- W3091203504 crossrefType "dissertation" @default.
- W3091203504 hasAuthorship W3091203504A5065036656 @default.
- W3091203504 hasConcept C105795698 @default.
- W3091203504 hasConcept C106159729 @default.
- W3091203504 hasConcept C126255220 @default.
- W3091203504 hasConcept C149717495 @default.
- W3091203504 hasConcept C162324750 @default.
- W3091203504 hasConcept C167928553 @default.
- W3091203504 hasConcept C185429906 @default.
- W3091203504 hasConcept C2780033567 @default.
- W3091203504 hasConcept C28826006 @default.
- W3091203504 hasConcept C33923547 @default.
- W3091203504 hasConcept C72134830 @default.
- W3091203504 hasConcept C79495835 @default.
- W3091203504 hasConcept C8272713 @default.
- W3091203504 hasConcept C89106044 @default.
- W3091203504 hasConceptScore W3091203504C105795698 @default.
- W3091203504 hasConceptScore W3091203504C106159729 @default.
- W3091203504 hasConceptScore W3091203504C126255220 @default.
- W3091203504 hasConceptScore W3091203504C149717495 @default.
- W3091203504 hasConceptScore W3091203504C162324750 @default.
- W3091203504 hasConceptScore W3091203504C167928553 @default.
- W3091203504 hasConceptScore W3091203504C185429906 @default.
- W3091203504 hasConceptScore W3091203504C2780033567 @default.
- W3091203504 hasConceptScore W3091203504C28826006 @default.
- W3091203504 hasConceptScore W3091203504C33923547 @default.
- W3091203504 hasConceptScore W3091203504C72134830 @default.
- W3091203504 hasConceptScore W3091203504C79495835 @default.
- W3091203504 hasConceptScore W3091203504C8272713 @default.
- W3091203504 hasConceptScore W3091203504C89106044 @default.
- W3091203504 hasLocation W30912035041 @default.
- W3091203504 hasOpenAccess W3091203504 @default.
- W3091203504 hasPrimaryLocation W30912035041 @default.
- W3091203504 hasRelatedWork W1555755860 @default.
- W3091203504 hasRelatedWork W1977077996 @default.
- W3091203504 hasRelatedWork W2012340106 @default.
- W3091203504 hasRelatedWork W2022155447 @default.
- W3091203504 hasRelatedWork W2022340033 @default.
- W3091203504 hasRelatedWork W2073433477 @default.
- W3091203504 hasRelatedWork W2108937662 @default.
- W3091203504 hasRelatedWork W2121511848 @default.
- W3091203504 hasRelatedWork W2131954940 @default.
- W3091203504 hasRelatedWork W2342951944 @default.
- W3091203504 hasRelatedWork W2467305554 @default.
- W3091203504 hasRelatedWork W2536532355 @default.
- W3091203504 hasRelatedWork W2556081469 @default.
- W3091203504 hasRelatedWork W2789313119 @default.
- W3091203504 hasRelatedWork W2792748966 @default.
- W3091203504 hasRelatedWork W2793416863 @default.
- W3091203504 hasRelatedWork W2801914020 @default.
- W3091203504 hasRelatedWork W2938611065 @default.
- W3091203504 hasRelatedWork W2971862845 @default.
- W3091203504 hasRelatedWork W3103076024 @default.
- W3091203504 isParatext "false" @default.
- W3091203504 isRetracted "false" @default.
- W3091203504 magId "3091203504" @default.
- W3091203504 workType "dissertation" @default.