Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091213757> ?p ?o ?g. }
- W3091213757 endingPage "178359" @default.
- W3091213757 startingPage "178345" @default.
- W3091213757 abstract "Short-term traffic flow prediction is very important and provides the basic data for traffic management and route guidance. The rules of traffic flow data during different periods in a day are different. Thus, this article proposes a membership degree-based Markov (MM) model and two period division-based Markov (PM and PW) models. The MM model introduces the membership degree to determine the state of traffic flow. The PM and PW models introduce the Fisher optimal division method to divide one day into several periods based on traffic flow data. Then, the period division-based Markov models integrate the Markov (CM) or weighted Markov (WM) model with the MM model to predict traffic volumes during different periods. The impacts of vehicle type on traffic flow prediction are also discussed. The proposed models are verified using the field data. The results show that: (1) the PM and PW models both perform better than the CM, WM, state membership degree-based Markov and weighted state membership degree-based Markov models; (2) the PW model sometimes performs better than the backward propagation (BP) neural network; (3) when traffic flow data are distinguished by vehicle type, the performance of the PM and PW models can be improved. It is suggested to adopt the proposed period division-based Markov models to predict traffic flow with the concern of vehicle type, so that more accurate traffic flow information can be provided for traffic management and route guidance." @default.
- W3091213757 created "2020-10-08" @default.
- W3091213757 creator A5030446424 @default.
- W3091213757 creator A5043095729 @default.
- W3091213757 creator A5043116826 @default.
- W3091213757 date "2020-01-01" @default.
- W3091213757 modified "2023-10-16" @default.
- W3091213757 title "Period Division-Based Markov Models for Short-Term Traffic Flow Prediction" @default.
- W3091213757 cites W1975362087 @default.
- W3091213757 cites W2003359455 @default.
- W3091213757 cites W2027392238 @default.
- W3091213757 cites W2036809394 @default.
- W3091213757 cites W2052703101 @default.
- W3091213757 cites W2062690107 @default.
- W3091213757 cites W2077537883 @default.
- W3091213757 cites W2082533141 @default.
- W3091213757 cites W2083238230 @default.
- W3091213757 cites W2102847084 @default.
- W3091213757 cites W2103312443 @default.
- W3091213757 cites W2137214660 @default.
- W3091213757 cites W2139606794 @default.
- W3091213757 cites W2249790616 @default.
- W3091213757 cites W2259957090 @default.
- W3091213757 cites W2583110309 @default.
- W3091213757 cites W2593182953 @default.
- W3091213757 cites W2695427614 @default.
- W3091213757 cites W2759459495 @default.
- W3091213757 cites W2782199856 @default.
- W3091213757 cites W2793820729 @default.
- W3091213757 cites W2800123561 @default.
- W3091213757 cites W2804291859 @default.
- W3091213757 cites W2806123914 @default.
- W3091213757 cites W2811084102 @default.
- W3091213757 cites W2883345462 @default.
- W3091213757 cites W2887607320 @default.
- W3091213757 cites W2899617249 @default.
- W3091213757 cites W2900068794 @default.
- W3091213757 cites W2905967367 @default.
- W3091213757 cites W2914182690 @default.
- W3091213757 cites W2914743966 @default.
- W3091213757 cites W2938342315 @default.
- W3091213757 cites W2945214738 @default.
- W3091213757 cites W2955819484 @default.
- W3091213757 cites W2963430160 @default.
- W3091213757 cites W2971289586 @default.
- W3091213757 cites W2998374233 @default.
- W3091213757 cites W3000056055 @default.
- W3091213757 doi "https://doi.org/10.1109/access.2020.3027866" @default.
- W3091213757 hasPublicationYear "2020" @default.
- W3091213757 type Work @default.
- W3091213757 sameAs 3091213757 @default.
- W3091213757 citedByCount "9" @default.
- W3091213757 countsByYear W30912137572021 @default.
- W3091213757 countsByYear W30912137572022 @default.
- W3091213757 countsByYear W30912137572023 @default.
- W3091213757 crossrefType "journal-article" @default.
- W3091213757 hasAuthorship W3091213757A5030446424 @default.
- W3091213757 hasAuthorship W3091213757A5043095729 @default.
- W3091213757 hasAuthorship W3091213757A5043116826 @default.
- W3091213757 hasBestOaLocation W30912137571 @default.
- W3091213757 hasConcept C105795698 @default.
- W3091213757 hasConcept C119857082 @default.
- W3091213757 hasConcept C124101348 @default.
- W3091213757 hasConcept C154945302 @default.
- W3091213757 hasConcept C159886148 @default.
- W3091213757 hasConcept C163836022 @default.
- W3091213757 hasConcept C176715033 @default.
- W3091213757 hasConcept C207512268 @default.
- W3091213757 hasConcept C23224414 @default.
- W3091213757 hasConcept C31258907 @default.
- W3091213757 hasConcept C33923547 @default.
- W3091213757 hasConcept C41008148 @default.
- W3091213757 hasConcept C60798267 @default.
- W3091213757 hasConcept C67186912 @default.
- W3091213757 hasConcept C77088390 @default.
- W3091213757 hasConcept C79403827 @default.
- W3091213757 hasConcept C94375191 @default.
- W3091213757 hasConcept C98763669 @default.
- W3091213757 hasConceptScore W3091213757C105795698 @default.
- W3091213757 hasConceptScore W3091213757C119857082 @default.
- W3091213757 hasConceptScore W3091213757C124101348 @default.
- W3091213757 hasConceptScore W3091213757C154945302 @default.
- W3091213757 hasConceptScore W3091213757C159886148 @default.
- W3091213757 hasConceptScore W3091213757C163836022 @default.
- W3091213757 hasConceptScore W3091213757C176715033 @default.
- W3091213757 hasConceptScore W3091213757C207512268 @default.
- W3091213757 hasConceptScore W3091213757C23224414 @default.
- W3091213757 hasConceptScore W3091213757C31258907 @default.
- W3091213757 hasConceptScore W3091213757C33923547 @default.
- W3091213757 hasConceptScore W3091213757C41008148 @default.
- W3091213757 hasConceptScore W3091213757C60798267 @default.
- W3091213757 hasConceptScore W3091213757C67186912 @default.
- W3091213757 hasConceptScore W3091213757C77088390 @default.
- W3091213757 hasConceptScore W3091213757C79403827 @default.
- W3091213757 hasConceptScore W3091213757C94375191 @default.
- W3091213757 hasConceptScore W3091213757C98763669 @default.
- W3091213757 hasFunder F4320321001 @default.
- W3091213757 hasFunder F4320335787 @default.