Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091314232> ?p ?o ?g. }
- W3091314232 abstract "In multi-object detection using neural networks, most methods train a network based on ground truth assignment, which makes the training too heuristic and complicated. In this paper, we reformulate the multi-object detection task as a problem of density estimation of bounding boxes. Instead of using a ground-truth-assignment-based method, we train a network by estimating the probability density of bounding boxes in an input image using a mixture model. For this purpose, we propose a novel network for object detection called Mixture Density Object Detector (MDOD), and the corresponding objective function for the density-estimation-based training. Unlike the ground-truth-assignment-based methods, our proposed method gets rid of the cumbersome processes of matching between ground truth boxes and their predictions as well as the heuristic anchor design. It is also free from the problem of foreground-background imbalance. We applied MDOD to MS COCO dataset. Our proposed method not only deals with multi-object detection problems in a new approach, but also improves detection performances through MDOD. Code will be available." @default.
- W3091314232 created "2020-10-08" @default.
- W3091314232 creator A5001948765 @default.
- W3091314232 creator A5025263615 @default.
- W3091314232 creator A5063399065 @default.
- W3091314232 creator A5066713381 @default.
- W3091314232 creator A5084897975 @default.
- W3091314232 date "2021-05-04" @default.
- W3091314232 modified "2023-10-16" @default.
- W3091314232 title "Density-Based Object Detection: Learning Bounding Boxes without Ground Truth Assignment" @default.
- W3091314232 cites W1483870316 @default.
- W3091314232 cites W1533861849 @default.
- W3091314232 cites W1579853615 @default.
- W3091314232 cites W2102605133 @default.
- W3091314232 cites W2108598243 @default.
- W3091314232 cites W2113325037 @default.
- W3091314232 cites W2168148636 @default.
- W3091314232 cites W2175012183 @default.
- W3091314232 cites W2194775991 @default.
- W3091314232 cites W2341497066 @default.
- W3091314232 cites W2407521645 @default.
- W3091314232 cites W2555751471 @default.
- W3091314232 cites W2565639579 @default.
- W3091314232 cites W2570343428 @default.
- W3091314232 cites W2579985080 @default.
- W3091314232 cites W2599765304 @default.
- W3091314232 cites W2613718673 @default.
- W3091314232 cites W2743473392 @default.
- W3091314232 cites W2767286248 @default.
- W3091314232 cites W2770184303 @default.
- W3091314232 cites W2796347433 @default.
- W3091314232 cites W2886335102 @default.
- W3091314232 cites W2899607431 @default.
- W3091314232 cites W2899771611 @default.
- W3091314232 cites W2902599944 @default.
- W3091314232 cites W2903265578 @default.
- W3091314232 cites W2908765305 @default.
- W3091314232 cites W2914868659 @default.
- W3091314232 cites W2925359305 @default.
- W3091314232 cites W2929738993 @default.
- W3091314232 cites W2935837427 @default.
- W3091314232 cites W2936404177 @default.
- W3091314232 cites W2936525159 @default.
- W3091314232 cites W2938614126 @default.
- W3091314232 cites W2941472577 @default.
- W3091314232 cites W2949117887 @default.
- W3091314232 cites W2949858991 @default.
- W3091314232 cites W2950477723 @default.
- W3091314232 cites W2950762923 @default.
- W3091314232 cites W2951548327 @default.
- W3091314232 cites W2962677013 @default.
- W3091314232 cites W2963016543 @default.
- W3091314232 cites W2963068995 @default.
- W3091314232 cites W2963113370 @default.
- W3091314232 cites W2963299996 @default.
- W3091314232 cites W2963474687 @default.
- W3091314232 cites W2964121718 @default.
- W3091314232 cites W2964241181 @default.
- W3091314232 cites W2964632911 @default.
- W3091314232 cites W2965903589 @default.
- W3091314232 cites W2971420639 @default.
- W3091314232 cites W2971900262 @default.
- W3091314232 cites W2981958729 @default.
- W3091314232 cites W2989568894 @default.
- W3091314232 cites W2990268359 @default.
- W3091314232 cites W3035396860 @default.
- W3091314232 cites W3102701618 @default.
- W3091314232 hasPublicationYear "2021" @default.
- W3091314232 type Work @default.
- W3091314232 sameAs 3091314232 @default.
- W3091314232 citedByCount "2" @default.
- W3091314232 countsByYear W30913142322021 @default.
- W3091314232 crossrefType "journal-article" @default.
- W3091314232 hasAuthorship W3091314232A5001948765 @default.
- W3091314232 hasAuthorship W3091314232A5025263615 @default.
- W3091314232 hasAuthorship W3091314232A5063399065 @default.
- W3091314232 hasAuthorship W3091314232A5066713381 @default.
- W3091314232 hasAuthorship W3091314232A5084897975 @default.
- W3091314232 hasConcept C105795698 @default.
- W3091314232 hasConcept C11413529 @default.
- W3091314232 hasConcept C115961682 @default.
- W3091314232 hasConcept C127413603 @default.
- W3091314232 hasConcept C146849305 @default.
- W3091314232 hasConcept C147037132 @default.
- W3091314232 hasConcept C153180895 @default.
- W3091314232 hasConcept C154945302 @default.
- W3091314232 hasConcept C165064840 @default.
- W3091314232 hasConcept C173801870 @default.
- W3091314232 hasConcept C201995342 @default.
- W3091314232 hasConcept C2776151529 @default.
- W3091314232 hasConcept C2780451532 @default.
- W3091314232 hasConcept C2781238097 @default.
- W3091314232 hasConcept C31972630 @default.
- W3091314232 hasConcept C33923547 @default.
- W3091314232 hasConcept C41008148 @default.
- W3091314232 hasConcept C63584917 @default.
- W3091314232 hasConceptScore W3091314232C105795698 @default.
- W3091314232 hasConceptScore W3091314232C11413529 @default.
- W3091314232 hasConceptScore W3091314232C115961682 @default.
- W3091314232 hasConceptScore W3091314232C127413603 @default.