Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091350697> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3091350697 abstract "In recent years, deep learning has shown great vitality in the field of intelligent fault diagnosis. However, most diagnostic models are not yet capable enough to capture the rich multi-scale features in raw vibration signals. Therefore, a multi-scale, attention-mechanism based, convolutional neural network (MSAM-CNN), is proposed to automatically diagnose health states of rolling bearings. The network is one-dimensional, and the information of the original vibration signal on different scales is processed by a parallel multi-branch structure. Then the learned complementary features from different branches are fused. Meanwhile, the attention mechanism can automatically select the optimal features. The MSAM-CNN is evaluated on the bearing dataset that is provided by Case Western Reserve University (CWRU). Experimental results indicate that the proposed network can greatly improve the fault recognition ability of the convolutional neural network, and the MSAM-CNN is superior to four forefront deep learning fault diagnosis networks under strong noise interference." @default.
- W3091350697 created "2020-10-08" @default.
- W3091350697 creator A5003564537 @default.
- W3091350697 creator A5026494660 @default.
- W3091350697 creator A5040472114 @default.
- W3091350697 creator A5074574647 @default.
- W3091350697 date "2020-08-01" @default.
- W3091350697 modified "2023-10-17" @default.
- W3091350697 title "Multi-Scale CNN based on Attention Mechanism for Rolling Bearing Fault Diagnosis" @default.
- W3091350697 cites W2045186954 @default.
- W3091350697 cites W2756995647 @default.
- W3091350697 cites W2768753204 @default.
- W3091350697 cites W2800911105 @default.
- W3091350697 cites W2808496542 @default.
- W3091350697 cites W2892370324 @default.
- W3091350697 cites W2905949437 @default.
- W3091350697 cites W2906578288 @default.
- W3091350697 cites W2947583263 @default.
- W3091350697 cites W2972341163 @default.
- W3091350697 cites W2989818023 @default.
- W3091350697 cites W2998564532 @default.
- W3091350697 cites W3000384844 @default.
- W3091350697 cites W3022167277 @default.
- W3091350697 doi "https://doi.org/10.1109/aparm49247.2020.9209470" @default.
- W3091350697 hasPublicationYear "2020" @default.
- W3091350697 type Work @default.
- W3091350697 sameAs 3091350697 @default.
- W3091350697 citedByCount "9" @default.
- W3091350697 countsByYear W30913506972021 @default.
- W3091350697 countsByYear W30913506972022 @default.
- W3091350697 countsByYear W30913506972023 @default.
- W3091350697 crossrefType "proceedings-article" @default.
- W3091350697 hasAuthorship W3091350697A5003564537 @default.
- W3091350697 hasAuthorship W3091350697A5026494660 @default.
- W3091350697 hasAuthorship W3091350697A5040472114 @default.
- W3091350697 hasAuthorship W3091350697A5074574647 @default.
- W3091350697 hasConcept C108583219 @default.
- W3091350697 hasConcept C111472728 @default.
- W3091350697 hasConcept C115961682 @default.
- W3091350697 hasConcept C121332964 @default.
- W3091350697 hasConcept C127162648 @default.
- W3091350697 hasConcept C127313418 @default.
- W3091350697 hasConcept C138885662 @default.
- W3091350697 hasConcept C153180895 @default.
- W3091350697 hasConcept C154945302 @default.
- W3091350697 hasConcept C165205528 @default.
- W3091350697 hasConcept C175551986 @default.
- W3091350697 hasConcept C199978012 @default.
- W3091350697 hasConcept C2778755073 @default.
- W3091350697 hasConcept C32022120 @default.
- W3091350697 hasConcept C41008148 @default.
- W3091350697 hasConcept C50644808 @default.
- W3091350697 hasConcept C62520636 @default.
- W3091350697 hasConcept C76155785 @default.
- W3091350697 hasConcept C81363708 @default.
- W3091350697 hasConcept C89611455 @default.
- W3091350697 hasConcept C99498987 @default.
- W3091350697 hasConceptScore W3091350697C108583219 @default.
- W3091350697 hasConceptScore W3091350697C111472728 @default.
- W3091350697 hasConceptScore W3091350697C115961682 @default.
- W3091350697 hasConceptScore W3091350697C121332964 @default.
- W3091350697 hasConceptScore W3091350697C127162648 @default.
- W3091350697 hasConceptScore W3091350697C127313418 @default.
- W3091350697 hasConceptScore W3091350697C138885662 @default.
- W3091350697 hasConceptScore W3091350697C153180895 @default.
- W3091350697 hasConceptScore W3091350697C154945302 @default.
- W3091350697 hasConceptScore W3091350697C165205528 @default.
- W3091350697 hasConceptScore W3091350697C175551986 @default.
- W3091350697 hasConceptScore W3091350697C199978012 @default.
- W3091350697 hasConceptScore W3091350697C2778755073 @default.
- W3091350697 hasConceptScore W3091350697C32022120 @default.
- W3091350697 hasConceptScore W3091350697C41008148 @default.
- W3091350697 hasConceptScore W3091350697C50644808 @default.
- W3091350697 hasConceptScore W3091350697C62520636 @default.
- W3091350697 hasConceptScore W3091350697C76155785 @default.
- W3091350697 hasConceptScore W3091350697C81363708 @default.
- W3091350697 hasConceptScore W3091350697C89611455 @default.
- W3091350697 hasConceptScore W3091350697C99498987 @default.
- W3091350697 hasLocation W30913506971 @default.
- W3091350697 hasOpenAccess W3091350697 @default.
- W3091350697 hasPrimaryLocation W30913506971 @default.
- W3091350697 hasRelatedWork W2731899572 @default.
- W3091350697 hasRelatedWork W2999805992 @default.
- W3091350697 hasRelatedWork W3011074480 @default.
- W3091350697 hasRelatedWork W3116150086 @default.
- W3091350697 hasRelatedWork W3133861977 @default.
- W3091350697 hasRelatedWork W3192840557 @default.
- W3091350697 hasRelatedWork W4200173597 @default.
- W3091350697 hasRelatedWork W4291897433 @default.
- W3091350697 hasRelatedWork W4312417841 @default.
- W3091350697 hasRelatedWork W4321369474 @default.
- W3091350697 isParatext "false" @default.
- W3091350697 isRetracted "false" @default.
- W3091350697 magId "3091350697" @default.
- W3091350697 workType "article" @default.