Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091409475> ?p ?o ?g. }
- W3091409475 endingPage "119005" @default.
- W3091409475 startingPage "119005" @default.
- W3091409475 abstract "Abstract It is of great significance to rapidly and accurately predict the energy performance of centrifugal pumps for the macro-control of the entire electric power system. However, some challenges are encountered, for example, the numerical simulation requires huge computing resources and calculating time, the theoretical loss model needs to improve the prediction accuracy, etc. Based on the multiple geometrical parameters and operation conditions, a hybrid neural network is proposed to predict the energy performance (i.e. the head, power and efficiency) of centrifugal pumps, where the theoretical loss model is incorporated into the back propagation neural network and then the neural network structure is optimized by automatically determining the node number of hidden layers. When compared with the experiments, the energy performance is well predicted by using the hybrid neural network with the mean-square-error (MSE) for the head, power and efficiency of 0.0062, 8.4E-4, 0.020, respectively. Besides, by considering the theoretical loss model, the hybrid neural network demonstrates a dramatic decrease in the head MSE and the efficiency MSE when compared with the original neural network. Furthermore, the hybrid neural network performs much better than the traditional linear regression in a wide flow-rate range for multiple centrifugal pumps." @default.
- W3091409475 created "2020-10-08" @default.
- W3091409475 creator A5005028073 @default.
- W3091409475 creator A5016573463 @default.
- W3091409475 creator A5048687913 @default.
- W3091409475 creator A5066983458 @default.
- W3091409475 creator A5081125039 @default.
- W3091409475 creator A5086852193 @default.
- W3091409475 date "2020-12-01" @default.
- W3091409475 modified "2023-10-18" @default.
- W3091409475 title "Energy performance prediction of the centrifugal pumps by using a hybrid neural network" @default.
- W3091409475 cites W1104973071 @default.
- W3091409475 cites W1576557448 @default.
- W3091409475 cites W1965088345 @default.
- W3091409475 cites W1978354636 @default.
- W3091409475 cites W1978713389 @default.
- W3091409475 cites W1983227163 @default.
- W3091409475 cites W2015354716 @default.
- W3091409475 cites W2023688368 @default.
- W3091409475 cites W2050516015 @default.
- W3091409475 cites W2050551672 @default.
- W3091409475 cites W2051369174 @default.
- W3091409475 cites W2051581480 @default.
- W3091409475 cites W2053012328 @default.
- W3091409475 cites W2073442551 @default.
- W3091409475 cites W2100495367 @default.
- W3091409475 cites W2102293256 @default.
- W3091409475 cites W2123427810 @default.
- W3091409475 cites W2144234063 @default.
- W3091409475 cites W2250832362 @default.
- W3091409475 cites W2270733429 @default.
- W3091409475 cites W2326123175 @default.
- W3091409475 cites W2363963449 @default.
- W3091409475 cites W2534240011 @default.
- W3091409475 cites W2555044752 @default.
- W3091409475 cites W2588050788 @default.
- W3091409475 cites W2740535977 @default.
- W3091409475 cites W2789452807 @default.
- W3091409475 cites W2800242827 @default.
- W3091409475 cites W2906788779 @default.
- W3091409475 cites W2909238759 @default.
- W3091409475 cites W2912764223 @default.
- W3091409475 cites W2914602288 @default.
- W3091409475 cites W2921542436 @default.
- W3091409475 cites W2921593089 @default.
- W3091409475 cites W2934729153 @default.
- W3091409475 cites W2962642705 @default.
- W3091409475 cites W2969356768 @default.
- W3091409475 cites W2995562355 @default.
- W3091409475 cites W2999716708 @default.
- W3091409475 doi "https://doi.org/10.1016/j.energy.2020.119005" @default.
- W3091409475 hasPublicationYear "2020" @default.
- W3091409475 type Work @default.
- W3091409475 sameAs 3091409475 @default.
- W3091409475 citedByCount "34" @default.
- W3091409475 countsByYear W30914094752021 @default.
- W3091409475 countsByYear W30914094752022 @default.
- W3091409475 countsByYear W30914094752023 @default.
- W3091409475 crossrefType "journal-article" @default.
- W3091409475 hasAuthorship W3091409475A5005028073 @default.
- W3091409475 hasAuthorship W3091409475A5016573463 @default.
- W3091409475 hasAuthorship W3091409475A5048687913 @default.
- W3091409475 hasAuthorship W3091409475A5066983458 @default.
- W3091409475 hasAuthorship W3091409475A5081125039 @default.
- W3091409475 hasAuthorship W3091409475A5086852193 @default.
- W3091409475 hasConcept C105795698 @default.
- W3091409475 hasConcept C127413603 @default.
- W3091409475 hasConcept C153005164 @default.
- W3091409475 hasConcept C154945302 @default.
- W3091409475 hasConcept C166675230 @default.
- W3091409475 hasConcept C171146098 @default.
- W3091409475 hasConcept C186370098 @default.
- W3091409475 hasConcept C33923547 @default.
- W3091409475 hasConcept C41008148 @default.
- W3091409475 hasConcept C50644808 @default.
- W3091409475 hasConcept C78519656 @default.
- W3091409475 hasConceptScore W3091409475C105795698 @default.
- W3091409475 hasConceptScore W3091409475C127413603 @default.
- W3091409475 hasConceptScore W3091409475C153005164 @default.
- W3091409475 hasConceptScore W3091409475C154945302 @default.
- W3091409475 hasConceptScore W3091409475C166675230 @default.
- W3091409475 hasConceptScore W3091409475C171146098 @default.
- W3091409475 hasConceptScore W3091409475C186370098 @default.
- W3091409475 hasConceptScore W3091409475C33923547 @default.
- W3091409475 hasConceptScore W3091409475C41008148 @default.
- W3091409475 hasConceptScore W3091409475C50644808 @default.
- W3091409475 hasConceptScore W3091409475C78519656 @default.
- W3091409475 hasFunder F4320321001 @default.
- W3091409475 hasFunder F4320332375 @default.
- W3091409475 hasLocation W30914094751 @default.
- W3091409475 hasOpenAccess W3091409475 @default.
- W3091409475 hasPrimaryLocation W30914094751 @default.
- W3091409475 hasRelatedWork W2338566906 @default.
- W3091409475 hasRelatedWork W2354304164 @default.
- W3091409475 hasRelatedWork W2372902582 @default.
- W3091409475 hasRelatedWork W2383897885 @default.
- W3091409475 hasRelatedWork W2386387936 @default.
- W3091409475 hasRelatedWork W2497079430 @default.