Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091420130> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3091420130 abstract "Clustering is one of the most common applications of unsupervised learning, being present in many statistical data analysis processes performed by scientists and engineers. Because of their special features, some categories of Artificial Neural Networks have demonstrated to be specially efficient when it comes to clustering. The Growing Neural Gas (GNG) is a good example of these networks, not only because its capability for revealing the clusters underlying in a certain distribution with an optimized number of neurons, but to faithfully describe the topological relations among the different clusters of a dataset. However, because of their intrinsic nature, there will be some data distributions with regions where no data can be found. Aiming to perform a clustering process on these datasets, this paper presents the design of a Growing Neural Gas-inspired model that keeps its neuron prototypes out of a set of regions previously specified, namely Forbidden Region Growing Neural Gas (FRGNG). Experimental results illustrate how this model can represent an alternative, in terms of accuracy, to one of the most recent region avoiding clustering algorithms such as the Forbidden Region Self-Organizing Map (FRSOFM)." @default.
- W3091420130 created "2020-10-08" @default.
- W3091420130 creator A5027647895 @default.
- W3091420130 creator A5079803939 @default.
- W3091420130 creator A5085558846 @default.
- W3091420130 creator A5089321577 @default.
- W3091420130 date "2020-07-01" @default.
- W3091420130 modified "2023-10-16" @default.
- W3091420130 title "Image Clustering Using a Growing Neural Gas with Forbidden Regions" @default.
- W3091420130 cites W1482503584 @default.
- W3091420130 cites W1990517717 @default.
- W3091420130 cites W2006493416 @default.
- W3091420130 cites W2010150441 @default.
- W3091420130 cites W2022670034 @default.
- W3091420130 cites W2035643830 @default.
- W3091420130 cites W2037604206 @default.
- W3091420130 cites W2075102802 @default.
- W3091420130 cites W2123123669 @default.
- W3091420130 cites W2138754805 @default.
- W3091420130 cites W2150811404 @default.
- W3091420130 cites W2170966581 @default.
- W3091420130 cites W2803454958 @default.
- W3091420130 cites W2921485696 @default.
- W3091420130 doi "https://doi.org/10.1109/ijcnn48605.2020.9207700" @default.
- W3091420130 hasPublicationYear "2020" @default.
- W3091420130 type Work @default.
- W3091420130 sameAs 3091420130 @default.
- W3091420130 citedByCount "0" @default.
- W3091420130 crossrefType "proceedings-article" @default.
- W3091420130 hasAuthorship W3091420130A5027647895 @default.
- W3091420130 hasAuthorship W3091420130A5079803939 @default.
- W3091420130 hasAuthorship W3091420130A5085558846 @default.
- W3091420130 hasAuthorship W3091420130A5089321577 @default.
- W3091420130 hasConcept C104047586 @default.
- W3091420130 hasConcept C111919701 @default.
- W3091420130 hasConcept C119857082 @default.
- W3091420130 hasConcept C124101348 @default.
- W3091420130 hasConcept C147168706 @default.
- W3091420130 hasConcept C153180895 @default.
- W3091420130 hasConcept C154945302 @default.
- W3091420130 hasConcept C177264268 @default.
- W3091420130 hasConcept C186767784 @default.
- W3091420130 hasConcept C199360897 @default.
- W3091420130 hasConcept C41008148 @default.
- W3091420130 hasConcept C50644808 @default.
- W3091420130 hasConcept C58489278 @default.
- W3091420130 hasConcept C73555534 @default.
- W3091420130 hasConcept C8038995 @default.
- W3091420130 hasConcept C90322556 @default.
- W3091420130 hasConcept C94641424 @default.
- W3091420130 hasConcept C98045186 @default.
- W3091420130 hasConceptScore W3091420130C104047586 @default.
- W3091420130 hasConceptScore W3091420130C111919701 @default.
- W3091420130 hasConceptScore W3091420130C119857082 @default.
- W3091420130 hasConceptScore W3091420130C124101348 @default.
- W3091420130 hasConceptScore W3091420130C147168706 @default.
- W3091420130 hasConceptScore W3091420130C153180895 @default.
- W3091420130 hasConceptScore W3091420130C154945302 @default.
- W3091420130 hasConceptScore W3091420130C177264268 @default.
- W3091420130 hasConceptScore W3091420130C186767784 @default.
- W3091420130 hasConceptScore W3091420130C199360897 @default.
- W3091420130 hasConceptScore W3091420130C41008148 @default.
- W3091420130 hasConceptScore W3091420130C50644808 @default.
- W3091420130 hasConceptScore W3091420130C58489278 @default.
- W3091420130 hasConceptScore W3091420130C73555534 @default.
- W3091420130 hasConceptScore W3091420130C8038995 @default.
- W3091420130 hasConceptScore W3091420130C90322556 @default.
- W3091420130 hasConceptScore W3091420130C94641424 @default.
- W3091420130 hasConceptScore W3091420130C98045186 @default.
- W3091420130 hasLocation W30914201301 @default.
- W3091420130 hasOpenAccess W3091420130 @default.
- W3091420130 hasPrimaryLocation W30914201301 @default.
- W3091420130 hasRelatedWork W10015831 @default.
- W3091420130 hasRelatedWork W14587445 @default.
- W3091420130 hasRelatedWork W2533007 @default.
- W3091420130 hasRelatedWork W2873872 @default.
- W3091420130 hasRelatedWork W4486015 @default.
- W3091420130 hasRelatedWork W4771408 @default.
- W3091420130 hasRelatedWork W6821745 @default.
- W3091420130 hasRelatedWork W8787759 @default.
- W3091420130 hasRelatedWork W9321062 @default.
- W3091420130 hasRelatedWork W9770290 @default.
- W3091420130 isParatext "false" @default.
- W3091420130 isRetracted "false" @default.
- W3091420130 magId "3091420130" @default.
- W3091420130 workType "article" @default.