Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091445434> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W3091445434 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2020Structure enhanced least-squares migration by deep learning based structural preconditioningAuthors: Cheng ChengYang HeBin WangYi HuangCheng ChengTGSSearch for more papers by this author, Yang HeTGSSearch for more papers by this author, Bin WangTGSSearch for more papers by this author, and Yi HuangTGSSearch for more papers by this authorhttps://doi.org/10.1190/segam2020-3426676.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractIterative data-domain least-squares migration can overcome acquisition limitations and recover the reflectivity for desired amplitudes and resolutions. However, migration noise due to velocity errors and multiple scattering energy related to strong contrasts in the velocity model can be erroneously enhanced as well. In this complex case, it needs many extra iterations to achieve the final desired image. Regularization or preconditioning can be applied at each least-squares iteration to suppress migration artifacts, speed up convergency and improve inversion efficiency. However, in sedimentary layers, without proper fault constraints, it cannot preserve the real geological features in the image. In this work, we propose to use convolutional neural networks (CNNs) to automatically detect faults on the migration image first, and then to use the picked fault information as an additional constraint for preconditioning during least-squares migration. With proper training, our 3D predictive model can learn to detect true fault features and avoid erroneous picks of swing noise on the validation dataset. An offshore Brazil field data example in the Santos Basin demonstrates that our final least-squares migration images show enhanced fault structure, minimized migration artifacts, significantly increased image bandwidth and improved illumination after only a few iterations.Presentation Date: Wednesday, October 14, 2020Session Start Time: 8:30 AMPresentation Time: 9:45 AMLocation: 361APresentation Type: OralKeywords: least-squares migration, machine learning, faults, illumination, broadbandPermalink: https://doi.org/10.1190/segam2020-3426676.1FiguresReferencesRelatedDetailsCited byLeast-squares reverse time migration via deep learning-based updating operatorsKristian Torres and Mauricio Sacchi22 September 2022 | GEOPHYSICS, Vol. 87, No. 6 SEG Technical Program Expanded Abstracts 2020ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2020 Pages: 3887 publication data© 2020 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 30 Sep 2020 CITATION INFORMATION Cheng Cheng, Yang He, Bin Wang, and Yi Huang, (2020), Structure enhanced least-squares migration by deep learning based structural preconditioning, SEG Technical Program Expanded Abstracts : 2908-2912. https://doi.org/10.1190/segam2020-3426676.1 Plain-Language Summary Keywordsleast-squares migrationmachine learningfaultsilluminationbroadbandPDF DownloadLoading ..." @default.
- W3091445434 created "2020-10-08" @default.
- W3091445434 creator A5011915368 @default.
- W3091445434 creator A5020088480 @default.
- W3091445434 creator A5034379642 @default.
- W3091445434 creator A5066874244 @default.
- W3091445434 date "2020-09-30" @default.
- W3091445434 modified "2023-09-29" @default.
- W3091445434 title "Structure enhanced least-squares migration by deep learning based structural preconditioning" @default.
- W3091445434 cites W1901129140 @default.
- W3091445434 cites W2588053692 @default.
- W3091445434 cites W2895663205 @default.
- W3091445434 cites W2081054683 @default.
- W3091445434 doi "https://doi.org/10.1190/segam2020-3426676.1" @default.
- W3091445434 hasPublicationYear "2020" @default.
- W3091445434 type Work @default.
- W3091445434 sameAs 3091445434 @default.
- W3091445434 citedByCount "2" @default.
- W3091445434 countsByYear W30914454342022 @default.
- W3091445434 countsByYear W30914454342023 @default.
- W3091445434 crossrefType "proceedings-article" @default.
- W3091445434 hasAuthorship W3091445434A5011915368 @default.
- W3091445434 hasAuthorship W3091445434A5020088480 @default.
- W3091445434 hasAuthorship W3091445434A5034379642 @default.
- W3091445434 hasAuthorship W3091445434A5066874244 @default.
- W3091445434 hasConcept C108583219 @default.
- W3091445434 hasConcept C11413529 @default.
- W3091445434 hasConcept C118496448 @default.
- W3091445434 hasConcept C127313418 @default.
- W3091445434 hasConcept C154945302 @default.
- W3091445434 hasConcept C165205528 @default.
- W3091445434 hasConcept C175551986 @default.
- W3091445434 hasConcept C41008148 @default.
- W3091445434 hasConcept C81363708 @default.
- W3091445434 hasConceptScore W3091445434C108583219 @default.
- W3091445434 hasConceptScore W3091445434C11413529 @default.
- W3091445434 hasConceptScore W3091445434C118496448 @default.
- W3091445434 hasConceptScore W3091445434C127313418 @default.
- W3091445434 hasConceptScore W3091445434C154945302 @default.
- W3091445434 hasConceptScore W3091445434C165205528 @default.
- W3091445434 hasConceptScore W3091445434C175551986 @default.
- W3091445434 hasConceptScore W3091445434C41008148 @default.
- W3091445434 hasConceptScore W3091445434C81363708 @default.
- W3091445434 hasLocation W30914454341 @default.
- W3091445434 hasOpenAccess W3091445434 @default.
- W3091445434 hasPrimaryLocation W30914454341 @default.
- W3091445434 hasRelatedWork W2731899572 @default.
- W3091445434 hasRelatedWork W2999805992 @default.
- W3091445434 hasRelatedWork W3011074480 @default.
- W3091445434 hasRelatedWork W3116150086 @default.
- W3091445434 hasRelatedWork W3133861977 @default.
- W3091445434 hasRelatedWork W3192840557 @default.
- W3091445434 hasRelatedWork W4200173597 @default.
- W3091445434 hasRelatedWork W4291897433 @default.
- W3091445434 hasRelatedWork W4312417841 @default.
- W3091445434 hasRelatedWork W4321369474 @default.
- W3091445434 isParatext "false" @default.
- W3091445434 isRetracted "false" @default.
- W3091445434 magId "3091445434" @default.
- W3091445434 workType "article" @default.