Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091506459> ?p ?o ?g. }
- W3091506459 endingPage "927" @default.
- W3091506459 startingPage "918" @default.
- W3091506459 abstract "Accurate streamflow prediction is a fundamental task for integrated water resources management and flood risk mitigation. The purpose of this study is to forecast the water inflow to lake Como, (Italy) using different machine learning algorithms. The forecast is done for different days ranging from one day to three days. These models are evaluated by three statistical measures including Mean Absolute Error, Root Mean Squared Error, and the Nash-Sutcliffe Efficiency Coefficient. The experimental results show that Neural Network performs better for streamflow estimation with MAE and RMSE followed by Support Vector Regression and Random Forest." @default.
- W3091506459 created "2020-10-08" @default.
- W3091506459 creator A5004305859 @default.
- W3091506459 creator A5012933540 @default.
- W3091506459 creator A5027341990 @default.
- W3091506459 creator A5027882391 @default.
- W3091506459 creator A5029731295 @default.
- W3091506459 creator A5068039203 @default.
- W3091506459 date "2020-01-01" @default.
- W3091506459 modified "2023-09-26" @default.
- W3091506459 title "Evaluation of Machine Learning Techniques for Inflow Prediction in Lake Como, Italy" @default.
- W3091506459 cites W1775799718 @default.
- W3091506459 cites W1964357740 @default.
- W3091506459 cites W1981780459 @default.
- W3091506459 cites W1986143844 @default.
- W3091506459 cites W2033904036 @default.
- W3091506459 cites W2039581705 @default.
- W3091506459 cites W2042506099 @default.
- W3091506459 cites W2092568256 @default.
- W3091506459 cites W2131495061 @default.
- W3091506459 cites W2161576778 @default.
- W3091506459 cites W2162607025 @default.
- W3091506459 cites W2323268414 @default.
- W3091506459 cites W2567326027 @default.
- W3091506459 cites W2763635700 @default.
- W3091506459 cites W2772380110 @default.
- W3091506459 cites W2806162054 @default.
- W3091506459 cites W2893010936 @default.
- W3091506459 cites W2893934003 @default.
- W3091506459 cites W2902775161 @default.
- W3091506459 cites W2930669685 @default.
- W3091506459 cites W2981581440 @default.
- W3091506459 cites W2988766056 @default.
- W3091506459 cites W3018639621 @default.
- W3091506459 doi "https://doi.org/10.1016/j.procs.2020.09.087" @default.
- W3091506459 hasPublicationYear "2020" @default.
- W3091506459 type Work @default.
- W3091506459 sameAs 3091506459 @default.
- W3091506459 citedByCount "12" @default.
- W3091506459 countsByYear W30915064592021 @default.
- W3091506459 countsByYear W30915064592022 @default.
- W3091506459 countsByYear W30915064592023 @default.
- W3091506459 crossrefType "journal-article" @default.
- W3091506459 hasAuthorship W3091506459A5004305859 @default.
- W3091506459 hasAuthorship W3091506459A5012933540 @default.
- W3091506459 hasAuthorship W3091506459A5027341990 @default.
- W3091506459 hasAuthorship W3091506459A5027882391 @default.
- W3091506459 hasAuthorship W3091506459A5029731295 @default.
- W3091506459 hasAuthorship W3091506459A5068039203 @default.
- W3091506459 hasBestOaLocation W30915064591 @default.
- W3091506459 hasConcept C105795698 @default.
- W3091506459 hasConcept C115051666 @default.
- W3091506459 hasConcept C119857082 @default.
- W3091506459 hasConcept C121332964 @default.
- W3091506459 hasConcept C12267149 @default.
- W3091506459 hasConcept C126645576 @default.
- W3091506459 hasConcept C127313418 @default.
- W3091506459 hasConcept C138885662 @default.
- W3091506459 hasConcept C139945424 @default.
- W3091506459 hasConcept C153294291 @default.
- W3091506459 hasConcept C162324750 @default.
- W3091506459 hasConcept C169258074 @default.
- W3091506459 hasConcept C187320778 @default.
- W3091506459 hasConcept C187736073 @default.
- W3091506459 hasConcept C188154048 @default.
- W3091506459 hasConcept C205649164 @default.
- W3091506459 hasConcept C27206212 @default.
- W3091506459 hasConcept C2776132308 @default.
- W3091506459 hasConcept C2780451532 @default.
- W3091506459 hasConcept C33923547 @default.
- W3091506459 hasConcept C41008148 @default.
- W3091506459 hasConcept C50644808 @default.
- W3091506459 hasConcept C53739315 @default.
- W3091506459 hasConcept C58640448 @default.
- W3091506459 hasConcept C74256435 @default.
- W3091506459 hasConcept C76155785 @default.
- W3091506459 hasConcept C76886044 @default.
- W3091506459 hasConcept C83546350 @default.
- W3091506459 hasConceptScore W3091506459C105795698 @default.
- W3091506459 hasConceptScore W3091506459C115051666 @default.
- W3091506459 hasConceptScore W3091506459C119857082 @default.
- W3091506459 hasConceptScore W3091506459C121332964 @default.
- W3091506459 hasConceptScore W3091506459C12267149 @default.
- W3091506459 hasConceptScore W3091506459C126645576 @default.
- W3091506459 hasConceptScore W3091506459C127313418 @default.
- W3091506459 hasConceptScore W3091506459C138885662 @default.
- W3091506459 hasConceptScore W3091506459C139945424 @default.
- W3091506459 hasConceptScore W3091506459C153294291 @default.
- W3091506459 hasConceptScore W3091506459C162324750 @default.
- W3091506459 hasConceptScore W3091506459C169258074 @default.
- W3091506459 hasConceptScore W3091506459C187320778 @default.
- W3091506459 hasConceptScore W3091506459C187736073 @default.
- W3091506459 hasConceptScore W3091506459C188154048 @default.
- W3091506459 hasConceptScore W3091506459C205649164 @default.
- W3091506459 hasConceptScore W3091506459C27206212 @default.
- W3091506459 hasConceptScore W3091506459C2776132308 @default.
- W3091506459 hasConceptScore W3091506459C2780451532 @default.
- W3091506459 hasConceptScore W3091506459C33923547 @default.