Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091593783> ?p ?o ?g. }
- W3091593783 endingPage "110187" @default.
- W3091593783 startingPage "110187" @default.
- W3091593783 abstract "Simulation of reasonable timescales for any long physical process using molecular dynamics (MD) is a major challenge in computational physics. In this study, we have implemented an approach based on multi-fidelity physics informed neural network (MPINN) to achieve long-range MD simulation results over a large sample space with significantly less computational cost. The fidelity of our present multi-fidelity study is based on the integration timestep size of MD simulations. While MD simulations with larger timestep produce results with lower level of accuracy, it can provide enough computationally cheap training data for MPINN to learn an accurate relationship between these low-fidelity results and high-fidelity MD results obtained using smaller simulation timestep. We have performed two benchmark studies, involving one and two component LJ systems, to determine the optimum percentage of high-fidelity training data required to achieve accurate results with high computational saving. The results show that important system properties such as system energy per atom, system pressure and diffusion coefficients can be determined with high accuracy while saving 68% computational costs. Finally, as a demonstration of the applicability of our present methodology in practical MD studies, we have studied the viscosity of argon-copper nanofluid and its variation with temperature and volume fraction by MD simulation using MPINN. Then we have compared them with numerous previous studies and theoretical models. Our results indicate that MPINN can predict accurate nanofluid viscosity at a wide range of sample space with significantly small number of MD simulations. Our present methodology is the first implementation of MPINN in conjunction with MD simulation for predicting nanoscale properties. This can pave pathways to investigate more complex engineering problems that demand long-range MD simulations." @default.
- W3091593783 created "2020-10-08" @default.
- W3091593783 creator A5019512284 @default.
- W3091593783 creator A5023351528 @default.
- W3091593783 creator A5045547065 @default.
- W3091593783 creator A5069545928 @default.
- W3091593783 date "2021-02-01" @default.
- W3091593783 modified "2023-10-18" @default.
- W3091593783 title "Extraction of material properties through multi-fidelity deep learning from molecular dynamics simulation" @default.
- W3091593783 cites W1560780428 @default.
- W3091593783 cites W1977046327 @default.
- W3091593783 cites W1981922743 @default.
- W3091593783 cites W1982886636 @default.
- W3091593783 cites W1983932107 @default.
- W3091593783 cites W1984104023 @default.
- W3091593783 cites W1992899488 @default.
- W3091593783 cites W1993775517 @default.
- W3091593783 cites W2001868160 @default.
- W3091593783 cites W2010364254 @default.
- W3091593783 cites W2016160607 @default.
- W3091593783 cites W2019465613 @default.
- W3091593783 cites W2031226848 @default.
- W3091593783 cites W2033086537 @default.
- W3091593783 cites W2045592043 @default.
- W3091593783 cites W2047968138 @default.
- W3091593783 cites W2049883071 @default.
- W3091593783 cites W2051434435 @default.
- W3091593783 cites W2057522458 @default.
- W3091593783 cites W2106962807 @default.
- W3091593783 cites W2148730186 @default.
- W3091593783 cites W2257979135 @default.
- W3091593783 cites W2289967039 @default.
- W3091593783 cites W2323178299 @default.
- W3091593783 cites W2333787883 @default.
- W3091593783 cites W2417367996 @default.
- W3091593783 cites W2507348356 @default.
- W3091593783 cites W2551476181 @default.
- W3091593783 cites W2554278382 @default.
- W3091593783 cites W2563751252 @default.
- W3091593783 cites W2586938721 @default.
- W3091593783 cites W2766447205 @default.
- W3091593783 cites W2793998831 @default.
- W3091593783 cites W2806589038 @default.
- W3091593783 cites W2883084282 @default.
- W3091593783 cites W2884304640 @default.
- W3091593783 cites W2919958648 @default.
- W3091593783 cites W2931495809 @default.
- W3091593783 cites W2955977001 @default.
- W3091593783 cites W2984911467 @default.
- W3091593783 cites W2986348256 @default.
- W3091593783 cites W3012417314 @default.
- W3091593783 cites W3044155584 @default.
- W3091593783 doi "https://doi.org/10.1016/j.commatsci.2020.110187" @default.
- W3091593783 hasPublicationYear "2021" @default.
- W3091593783 type Work @default.
- W3091593783 sameAs 3091593783 @default.
- W3091593783 citedByCount "14" @default.
- W3091593783 countsByYear W30915937832021 @default.
- W3091593783 countsByYear W30915937832022 @default.
- W3091593783 countsByYear W30915937832023 @default.
- W3091593783 crossrefType "journal-article" @default.
- W3091593783 hasAuthorship W3091593783A5019512284 @default.
- W3091593783 hasAuthorship W3091593783A5023351528 @default.
- W3091593783 hasAuthorship W3091593783A5045547065 @default.
- W3091593783 hasAuthorship W3091593783A5069545928 @default.
- W3091593783 hasBestOaLocation W30915937832 @default.
- W3091593783 hasConcept C113364801 @default.
- W3091593783 hasConcept C11413529 @default.
- W3091593783 hasConcept C121332964 @default.
- W3091593783 hasConcept C121864883 @default.
- W3091593783 hasConcept C13280743 @default.
- W3091593783 hasConcept C147597530 @default.
- W3091593783 hasConcept C159985019 @default.
- W3091593783 hasConcept C185592680 @default.
- W3091593783 hasConcept C185798385 @default.
- W3091593783 hasConcept C192562407 @default.
- W3091593783 hasConcept C204323151 @default.
- W3091593783 hasConcept C205649164 @default.
- W3091593783 hasConcept C24890656 @default.
- W3091593783 hasConcept C2776459999 @default.
- W3091593783 hasConcept C41008148 @default.
- W3091593783 hasConcept C59593255 @default.
- W3091593783 hasConcept C76155785 @default.
- W3091593783 hasConceptScore W3091593783C113364801 @default.
- W3091593783 hasConceptScore W3091593783C11413529 @default.
- W3091593783 hasConceptScore W3091593783C121332964 @default.
- W3091593783 hasConceptScore W3091593783C121864883 @default.
- W3091593783 hasConceptScore W3091593783C13280743 @default.
- W3091593783 hasConceptScore W3091593783C147597530 @default.
- W3091593783 hasConceptScore W3091593783C159985019 @default.
- W3091593783 hasConceptScore W3091593783C185592680 @default.
- W3091593783 hasConceptScore W3091593783C185798385 @default.
- W3091593783 hasConceptScore W3091593783C192562407 @default.
- W3091593783 hasConceptScore W3091593783C204323151 @default.
- W3091593783 hasConceptScore W3091593783C205649164 @default.
- W3091593783 hasConceptScore W3091593783C24890656 @default.
- W3091593783 hasConceptScore W3091593783C2776459999 @default.
- W3091593783 hasConceptScore W3091593783C41008148 @default.