Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091632011> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3091632011 endingPage "65" @default.
- W3091632011 startingPage "56" @default.
- W3091632011 abstract "Computer-aided detection or diagnosing support methods aims to improve breast cancer screening programs by helping radiologists to evaluate digital mammography (DM) exams. This system relates to the use of deep learning for automated detection and segmentation of soft tissue lesions at the early stage. This paper presents a novel deep learning approach, based on a two stage object detector combining an enhanced Faster R-CNN with the Libra R-CNN structure for the Object Detection segment. A segmentation network is placed on top of previous structure in order to provide accurate extraction and localization of masses various features, i.e: margin, shape. The segmentation head is based on a Recurrent Residual Convolutional Neural Network and can lead to an additional feature classification for specific instance properties. A database of digital mammograms was collected from one vendor, Hologic, of which 1,200 images contained masses. The performance for our automated detection system was assessed with the sensitivity of the model which reached a micro average recall: 0.892, micro average precision: 0.734, micro average F1 score: 0.805. Macro average recall: 0.896, macro average precision: 0.819, macro average F1 score: 0.843. The segmentation performance for the same test set was evaluated to a mean IOU of 0.859." @default.
- W3091632011 created "2020-10-08" @default.
- W3091632011 creator A5048635908 @default.
- W3091632011 creator A5074955717 @default.
- W3091632011 date "2020-01-01" @default.
- W3091632011 modified "2023-10-16" @default.
- W3091632011 title "Diagnostic Assessment of Deep Learning Algorithms for Detection and Segmentation of Lesion in Mammographic Images" @default.
- W3091632011 cites W1536680647 @default.
- W3091632011 cites W1861492603 @default.
- W3091632011 cites W1901129140 @default.
- W3091632011 cites W2102605133 @default.
- W3091632011 cites W2105929396 @default.
- W3091632011 cites W2108598243 @default.
- W3091632011 cites W2117539524 @default.
- W3091632011 cites W2119077877 @default.
- W3091632011 cites W2131687610 @default.
- W3091632011 cites W2240965754 @default.
- W3091632011 cites W2493683088 @default.
- W3091632011 cites W2549139847 @default.
- W3091632011 cites W2565639579 @default.
- W3091632011 cites W2592929672 @default.
- W3091632011 cites W2772723798 @default.
- W3091632011 cites W2890862129 @default.
- W3091632011 cites W2891566869 @default.
- W3091632011 cites W2923997689 @default.
- W3091632011 cites W2962721361 @default.
- W3091632011 cites W2963150697 @default.
- W3091632011 cites W2963857746 @default.
- W3091632011 cites W2993303538 @default.
- W3091632011 cites W304373761 @default.
- W3091632011 doi "https://doi.org/10.1007/978-3-030-59719-1_6" @default.
- W3091632011 hasPublicationYear "2020" @default.
- W3091632011 type Work @default.
- W3091632011 sameAs 3091632011 @default.
- W3091632011 citedByCount "4" @default.
- W3091632011 countsByYear W30916320112021 @default.
- W3091632011 countsByYear W30916320112022 @default.
- W3091632011 crossrefType "book-chapter" @default.
- W3091632011 hasAuthorship W3091632011A5048635908 @default.
- W3091632011 hasAuthorship W3091632011A5074955717 @default.
- W3091632011 hasConcept C121608353 @default.
- W3091632011 hasConcept C124504099 @default.
- W3091632011 hasConcept C126322002 @default.
- W3091632011 hasConcept C153180895 @default.
- W3091632011 hasConcept C154945302 @default.
- W3091632011 hasConcept C2780472235 @default.
- W3091632011 hasConcept C31972630 @default.
- W3091632011 hasConcept C41008148 @default.
- W3091632011 hasConcept C530470458 @default.
- W3091632011 hasConcept C71924100 @default.
- W3091632011 hasConcept C89600930 @default.
- W3091632011 hasConceptScore W3091632011C121608353 @default.
- W3091632011 hasConceptScore W3091632011C124504099 @default.
- W3091632011 hasConceptScore W3091632011C126322002 @default.
- W3091632011 hasConceptScore W3091632011C153180895 @default.
- W3091632011 hasConceptScore W3091632011C154945302 @default.
- W3091632011 hasConceptScore W3091632011C2780472235 @default.
- W3091632011 hasConceptScore W3091632011C31972630 @default.
- W3091632011 hasConceptScore W3091632011C41008148 @default.
- W3091632011 hasConceptScore W3091632011C530470458 @default.
- W3091632011 hasConceptScore W3091632011C71924100 @default.
- W3091632011 hasConceptScore W3091632011C89600930 @default.
- W3091632011 hasLocation W30916320111 @default.
- W3091632011 hasOpenAccess W3091632011 @default.
- W3091632011 hasPrimaryLocation W30916320111 @default.
- W3091632011 hasRelatedWork W1507266234 @default.
- W3091632011 hasRelatedWork W1631910785 @default.
- W3091632011 hasRelatedWork W1669643531 @default.
- W3091632011 hasRelatedWork W1721780360 @default.
- W3091632011 hasRelatedWork W2110230079 @default.
- W3091632011 hasRelatedWork W2117664411 @default.
- W3091632011 hasRelatedWork W2117933325 @default.
- W3091632011 hasRelatedWork W2122581818 @default.
- W3091632011 hasRelatedWork W2159066190 @default.
- W3091632011 hasRelatedWork W2739874619 @default.
- W3091632011 isParatext "false" @default.
- W3091632011 isRetracted "false" @default.
- W3091632011 magId "3091632011" @default.
- W3091632011 workType "book-chapter" @default.