Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091636705> ?p ?o ?g. }
- W3091636705 endingPage "143" @default.
- W3091636705 startingPage "129" @default.
- W3091636705 abstract "The accurate prediction of vacant parking space availability is becoming increasingly essential for assisting drivers to determine where to park in advance. It helps ease traffic pressure and reduce gas emission and pollution. This article proposes a novel multistep long short-term memory recurrent neural network (LSTM-NN) model to predict the number of the vacant parking spaces on the basis of historical parking availability information. The key parameters of the model are deeply optimized. The prediction model is fully benchmarked with five well-known machine learning models—i.e. a gated recurrent units neural network, a stacked autoencoder, a support vector regression, a back propagation neural network, and a <i>k</i>-nearest neighbor algorithm—whose key parameters are sufficiently optimized as well. Adequate experiments with practical data collected from two parking lots with various capacities and traffic flows were conducted to evaluate the models’ performances on short- and long-term predictions. Experimental results show that the proposed multistep LSTM-NN model outperforms all the benchmark models, especially in a commercial parking lot with heavy traffic flow." @default.
- W3091636705 created "2020-10-08" @default.
- W3091636705 creator A5047527610 @default.
- W3091636705 creator A5055314661 @default.
- W3091636705 creator A5063096622 @default.
- W3091636705 creator A5072517057 @default.
- W3091636705 date "2022-03-01" @default.
- W3091636705 modified "2023-10-17" @default.
- W3091636705 title "Predicting Vacant Parking Space Availability: A Long Short-Term Memory Approach" @default.
- W3091636705 cites W1508065755 @default.
- W3091636705 cites W1582119448 @default.
- W3091636705 cites W1615615219 @default.
- W3091636705 cites W1966690449 @default.
- W3091636705 cites W2008300660 @default.
- W3091636705 cites W2028489066 @default.
- W3091636705 cites W2036785686 @default.
- W3091636705 cites W2038849166 @default.
- W3091636705 cites W2043074941 @default.
- W3091636705 cites W2064675550 @default.
- W3091636705 cites W2091453093 @default.
- W3091636705 cites W2118160468 @default.
- W3091636705 cites W2152412884 @default.
- W3091636705 cites W2295038166 @default.
- W3091636705 cites W2474603704 @default.
- W3091636705 cites W2540276407 @default.
- W3091636705 cites W2545300838 @default.
- W3091636705 cites W2553165053 @default.
- W3091636705 cites W2560880226 @default.
- W3091636705 cites W2561953756 @default.
- W3091636705 cites W2609044178 @default.
- W3091636705 cites W2740570963 @default.
- W3091636705 cites W2754252319 @default.
- W3091636705 cites W2792244604 @default.
- W3091636705 cites W2799831917 @default.
- W3091636705 cites W2805072236 @default.
- W3091636705 cites W2808910047 @default.
- W3091636705 cites W2809334854 @default.
- W3091636705 cites W2889294691 @default.
- W3091636705 cites W2891809631 @default.
- W3091636705 cites W2899220442 @default.
- W3091636705 cites W2910886069 @default.
- W3091636705 cites W2916664939 @default.
- W3091636705 cites W2963086459 @default.
- W3091636705 cites W2969279223 @default.
- W3091636705 cites W2989697417 @default.
- W3091636705 cites W2989719163 @default.
- W3091636705 cites W3011277499 @default.
- W3091636705 cites W3023520985 @default.
- W3091636705 cites W3101840568 @default.
- W3091636705 cites W749924253 @default.
- W3091636705 doi "https://doi.org/10.1109/mits.2020.3014131" @default.
- W3091636705 hasPublicationYear "2022" @default.
- W3091636705 type Work @default.
- W3091636705 sameAs 3091636705 @default.
- W3091636705 citedByCount "13" @default.
- W3091636705 countsByYear W30916367052021 @default.
- W3091636705 countsByYear W30916367052022 @default.
- W3091636705 countsByYear W30916367052023 @default.
- W3091636705 crossrefType "journal-article" @default.
- W3091636705 hasAuthorship W3091636705A5047527610 @default.
- W3091636705 hasAuthorship W3091636705A5055314661 @default.
- W3091636705 hasAuthorship W3091636705A5063096622 @default.
- W3091636705 hasAuthorship W3091636705A5072517057 @default.
- W3091636705 hasConcept C101738243 @default.
- W3091636705 hasConcept C119857082 @default.
- W3091636705 hasConcept C121332964 @default.
- W3091636705 hasConcept C12267149 @default.
- W3091636705 hasConcept C124101348 @default.
- W3091636705 hasConcept C127413603 @default.
- W3091636705 hasConcept C13280743 @default.
- W3091636705 hasConcept C147168706 @default.
- W3091636705 hasConcept C154945302 @default.
- W3091636705 hasConcept C185798385 @default.
- W3091636705 hasConcept C205649164 @default.
- W3091636705 hasConcept C207512268 @default.
- W3091636705 hasConcept C22212356 @default.
- W3091636705 hasConcept C26517878 @default.
- W3091636705 hasConcept C2994392017 @default.
- W3091636705 hasConcept C38652104 @default.
- W3091636705 hasConcept C41008148 @default.
- W3091636705 hasConcept C50644808 @default.
- W3091636705 hasConcept C61797465 @default.
- W3091636705 hasConcept C62520636 @default.
- W3091636705 hasConceptScore W3091636705C101738243 @default.
- W3091636705 hasConceptScore W3091636705C119857082 @default.
- W3091636705 hasConceptScore W3091636705C121332964 @default.
- W3091636705 hasConceptScore W3091636705C12267149 @default.
- W3091636705 hasConceptScore W3091636705C124101348 @default.
- W3091636705 hasConceptScore W3091636705C127413603 @default.
- W3091636705 hasConceptScore W3091636705C13280743 @default.
- W3091636705 hasConceptScore W3091636705C147168706 @default.
- W3091636705 hasConceptScore W3091636705C154945302 @default.
- W3091636705 hasConceptScore W3091636705C185798385 @default.
- W3091636705 hasConceptScore W3091636705C205649164 @default.
- W3091636705 hasConceptScore W3091636705C207512268 @default.
- W3091636705 hasConceptScore W3091636705C22212356 @default.
- W3091636705 hasConceptScore W3091636705C26517878 @default.
- W3091636705 hasConceptScore W3091636705C2994392017 @default.