Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091715346> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3091715346 abstract "Accurate, real-time segmentation of thin, deformable, and moving objects in noisy medical ultrasound images remains a highly challenging task. This paper addresses the problem of segmenting guidewires and other thin, flexible devices from 4D ultrasound image sequences acquired during minimally-invasive surgical interventions. We propose a deep learning method based on a recurrent fully convolutional network architecture whose design captures temporal information from dense 4D (3D+time) image sequences. The network uses convolutional gated recurrent units interposed between the halves of a VNet-like model such that the skip-connections embedded in the encoder-decoder are preserved. Testing on realistic phantom tissues, ex vivo and human cadaver specimens, and live animal models of peripheral vascular and cardiovascular disease, we show that temporal encoding improves segmentation accuracy compared to standard single-frame model predictions in a way that is not simply associated to an increase in model size. Additionally, we demonstrate that our approach may be combined with traditional techniques such as active splines to further enhance stability over time." @default.
- W3091715346 created "2020-10-08" @default.
- W3091715346 creator A5007355297 @default.
- W3091715346 creator A5016415094 @default.
- W3091715346 creator A5082975824 @default.
- W3091715346 creator A5087072579 @default.
- W3091715346 date "2020-01-01" @default.
- W3091715346 modified "2023-09-28" @default.
- W3091715346 title "Guidewire Segmentation in 4D Ultrasound Sequences Using Recurrent Fully Convolutional Networks" @default.
- W3091715346 cites W1909740415 @default.
- W3091715346 cites W1926606048 @default.
- W3091715346 cites W2168005337 @default.
- W3091715346 cites W2267725415 @default.
- W3091715346 cites W2396197374 @default.
- W3091715346 cites W2535388113 @default.
- W3091715346 cites W2610147486 @default.
- W3091715346 cites W2614578122 @default.
- W3091715346 cites W2770215646 @default.
- W3091715346 cites W2774288077 @default.
- W3091715346 cites W2803628047 @default.
- W3091715346 cites W2807122651 @default.
- W3091715346 cites W2896018630 @default.
- W3091715346 cites W2912021503 @default.
- W3091715346 cites W2944707525 @default.
- W3091715346 cites W2960239140 @default.
- W3091715346 cites W2962685880 @default.
- W3091715346 cites W2962914239 @default.
- W3091715346 cites W2963392574 @default.
- W3091715346 cites W2963548592 @default.
- W3091715346 cites W2963574983 @default.
- W3091715346 cites W2963631529 @default.
- W3091715346 cites W2990205821 @default.
- W3091715346 cites W3001641707 @default.
- W3091715346 cites W3006598587 @default.
- W3091715346 cites W3006982732 @default.
- W3091715346 cites W3007372272 @default.
- W3091715346 doi "https://doi.org/10.1007/978-3-030-60334-2_6" @default.
- W3091715346 hasPublicationYear "2020" @default.
- W3091715346 type Work @default.
- W3091715346 sameAs 3091715346 @default.
- W3091715346 citedByCount "0" @default.
- W3091715346 crossrefType "book-chapter" @default.
- W3091715346 hasAuthorship W3091715346A5007355297 @default.
- W3091715346 hasAuthorship W3091715346A5016415094 @default.
- W3091715346 hasAuthorship W3091715346A5082975824 @default.
- W3091715346 hasAuthorship W3091715346A5087072579 @default.
- W3091715346 hasConcept C104293457 @default.
- W3091715346 hasConcept C108583219 @default.
- W3091715346 hasConcept C111919701 @default.
- W3091715346 hasConcept C118505674 @default.
- W3091715346 hasConcept C124504099 @default.
- W3091715346 hasConcept C126042441 @default.
- W3091715346 hasConcept C126838900 @default.
- W3091715346 hasConcept C153180895 @default.
- W3091715346 hasConcept C154945302 @default.
- W3091715346 hasConcept C31601959 @default.
- W3091715346 hasConcept C31972630 @default.
- W3091715346 hasConcept C41008148 @default.
- W3091715346 hasConcept C71924100 @default.
- W3091715346 hasConcept C76155785 @default.
- W3091715346 hasConcept C81363708 @default.
- W3091715346 hasConcept C89600930 @default.
- W3091715346 hasConceptScore W3091715346C104293457 @default.
- W3091715346 hasConceptScore W3091715346C108583219 @default.
- W3091715346 hasConceptScore W3091715346C111919701 @default.
- W3091715346 hasConceptScore W3091715346C118505674 @default.
- W3091715346 hasConceptScore W3091715346C124504099 @default.
- W3091715346 hasConceptScore W3091715346C126042441 @default.
- W3091715346 hasConceptScore W3091715346C126838900 @default.
- W3091715346 hasConceptScore W3091715346C153180895 @default.
- W3091715346 hasConceptScore W3091715346C154945302 @default.
- W3091715346 hasConceptScore W3091715346C31601959 @default.
- W3091715346 hasConceptScore W3091715346C31972630 @default.
- W3091715346 hasConceptScore W3091715346C41008148 @default.
- W3091715346 hasConceptScore W3091715346C71924100 @default.
- W3091715346 hasConceptScore W3091715346C76155785 @default.
- W3091715346 hasConceptScore W3091715346C81363708 @default.
- W3091715346 hasConceptScore W3091715346C89600930 @default.
- W3091715346 hasLocation W30917153461 @default.
- W3091715346 hasOpenAccess W3091715346 @default.
- W3091715346 hasPrimaryLocation W30917153461 @default.
- W3091715346 hasRelatedWork W11130107 @default.
- W3091715346 hasRelatedWork W12703013 @default.
- W3091715346 hasRelatedWork W14128562 @default.
- W3091715346 hasRelatedWork W1446482 @default.
- W3091715346 hasRelatedWork W1602910 @default.
- W3091715346 hasRelatedWork W2526871 @default.
- W3091715346 hasRelatedWork W274842 @default.
- W3091715346 hasRelatedWork W6572092 @default.
- W3091715346 hasRelatedWork W7789328 @default.
- W3091715346 hasRelatedWork W3000238 @default.
- W3091715346 isParatext "false" @default.
- W3091715346 isRetracted "false" @default.
- W3091715346 magId "3091715346" @default.
- W3091715346 workType "book-chapter" @default.