Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091837332> ?p ?o ?g. }
- W3091837332 endingPage "101975" @default.
- W3091837332 startingPage "101975" @default.
- W3091837332 abstract "Phyllosilicates, specifically, the kaolinite clay mineral (Al2Si2O5(OH)4), which is a layered silicate mineral with one silica tetrahedral sheet connected with oxygen atoms to one alumina octahedral octahedral sheet is ubiquitous and abundant in sedimentary basins, especially sandstone formations. This particular type of clay mineral fine particles can easily and rapidly cause reservoir formation damage in high temperature aquifers, geothermal, and petroleum reservoirs by detaching from the porous rock surface and migrate, and plug the pore-throats of the rock matrix. Several factors such as, reservoir temperature, pressure, geochemical alteration, permeating fluid, reactive flow, and multi-phase flow are attributed to the permeability decline of the porous rocks and subsequent fluid flow reduction, and consequently, leading to well productivity loss. Therefore, this paper presents laboratory modeling of fines transport in the hot porous sedimentary aquifer. This type of aquifer is located in sedimentary basins with the elevated heat flow and having a characteristic of a shallow depth and a high volume, which indicates a high natural porosity and permeability. In this work, we have conducted three sets of coreflood experiments in the temperature ranges of 125 °C 150 °C, and 175 °C. Kaolinite suspension water has been injected into the porous sandstone core at these temperatures to investigate the feasibility of a permeability and injectivity decline. The major experimental results revealed that there is an increase in water saturation and heat transfer rates. The concentration of fines surges with increasing PVI and permeability declines with increased time. Pressure soars with increasing Pore Volume Injection (PVI), but it stabilized after some time. Actually, PVI is a ratio of cumulative water injection to each pore chamber volume of the rock core. Importantly, the water discharge rate decreases with increasing suspension injection and on the other side, with fresh water injection, the rate of water discharge rises steadily. Furthermore, the experimental and mathematical models were tested against statistical model, multiple linear regression for validation. The modelling results showed good agreement and, therefore, this paper has explicated the significance of fines transport in aquifers under hot sedimentary basins." @default.
- W3091837332 created "2020-10-15" @default.
- W3091837332 creator A5000063547 @default.
- W3091837332 creator A5007971810 @default.
- W3091837332 creator A5016176319 @default.
- W3091837332 creator A5017131781 @default.
- W3091837332 creator A5022678593 @default.
- W3091837332 creator A5032133614 @default.
- W3091837332 creator A5044647533 @default.
- W3091837332 creator A5055105776 @default.
- W3091837332 creator A5069362492 @default.
- W3091837332 date "2021-01-01" @default.
- W3091837332 modified "2023-10-15" @default.
- W3091837332 title "Kaolinite fines colloidal-suspension transport in high temperature porous subsurface aqueous environment: Implications to the geothermal sandstone and hot sedimentary aquifer reservoirs permeability" @default.
- W3091837332 cites W1496829959 @default.
- W3091837332 cites W1516708351 @default.
- W3091837332 cites W1966148031 @default.
- W3091837332 cites W1973082377 @default.
- W3091837332 cites W1982230806 @default.
- W3091837332 cites W1982334294 @default.
- W3091837332 cites W1988335900 @default.
- W3091837332 cites W1989527736 @default.
- W3091837332 cites W1994913438 @default.
- W3091837332 cites W2011969980 @default.
- W3091837332 cites W2016454789 @default.
- W3091837332 cites W2028547749 @default.
- W3091837332 cites W2042595476 @default.
- W3091837332 cites W2045031199 @default.
- W3091837332 cites W2050319646 @default.
- W3091837332 cites W2063329015 @default.
- W3091837332 cites W2071105290 @default.
- W3091837332 cites W2077178570 @default.
- W3091837332 cites W2179717054 @default.
- W3091837332 cites W2293760007 @default.
- W3091837332 cites W2298471969 @default.
- W3091837332 cites W2494793119 @default.
- W3091837332 cites W2534182430 @default.
- W3091837332 cites W2552505498 @default.
- W3091837332 cites W2596676026 @default.
- W3091837332 cites W2617826625 @default.
- W3091837332 cites W2625577152 @default.
- W3091837332 cites W2726692239 @default.
- W3091837332 cites W2762138906 @default.
- W3091837332 cites W2780170446 @default.
- W3091837332 cites W2783375326 @default.
- W3091837332 cites W2883058914 @default.
- W3091837332 cites W2884965149 @default.
- W3091837332 cites W2886612495 @default.
- W3091837332 cites W2899254095 @default.
- W3091837332 cites W2908351170 @default.
- W3091837332 cites W2908979633 @default.
- W3091837332 cites W2909508002 @default.
- W3091837332 cites W2914904178 @default.
- W3091837332 cites W3023228078 @default.
- W3091837332 cites W3037190533 @default.
- W3091837332 cites W849654031 @default.
- W3091837332 doi "https://doi.org/10.1016/j.geothermics.2020.101975" @default.
- W3091837332 hasPublicationYear "2021" @default.
- W3091837332 type Work @default.
- W3091837332 sameAs 3091837332 @default.
- W3091837332 citedByCount "14" @default.
- W3091837332 countsByYear W30918373322021 @default.
- W3091837332 countsByYear W30918373322022 @default.
- W3091837332 countsByYear W30918373322023 @default.
- W3091837332 crossrefType "journal-article" @default.
- W3091837332 hasAuthorship W3091837332A5000063547 @default.
- W3091837332 hasAuthorship W3091837332A5007971810 @default.
- W3091837332 hasAuthorship W3091837332A5016176319 @default.
- W3091837332 hasAuthorship W3091837332A5017131781 @default.
- W3091837332 hasAuthorship W3091837332A5022678593 @default.
- W3091837332 hasAuthorship W3091837332A5032133614 @default.
- W3091837332 hasAuthorship W3091837332A5044647533 @default.
- W3091837332 hasAuthorship W3091837332A5055105776 @default.
- W3091837332 hasAuthorship W3091837332A5069362492 @default.
- W3091837332 hasConcept C111766609 @default.
- W3091837332 hasConcept C120882062 @default.
- W3091837332 hasConcept C127313418 @default.
- W3091837332 hasConcept C17409809 @default.
- W3091837332 hasConcept C185592680 @default.
- W3091837332 hasConcept C187320778 @default.
- W3091837332 hasConcept C199289684 @default.
- W3091837332 hasConcept C2778572594 @default.
- W3091837332 hasConcept C2779899878 @default.
- W3091837332 hasConcept C2780191791 @default.
- W3091837332 hasConcept C41625074 @default.
- W3091837332 hasConcept C55493867 @default.
- W3091837332 hasConcept C5900021 @default.
- W3091837332 hasConcept C6494504 @default.
- W3091837332 hasConcept C6648577 @default.
- W3091837332 hasConcept C75622301 @default.
- W3091837332 hasConcept C76177295 @default.
- W3091837332 hasConcept C8058405 @default.
- W3091837332 hasConceptScore W3091837332C111766609 @default.
- W3091837332 hasConceptScore W3091837332C120882062 @default.
- W3091837332 hasConceptScore W3091837332C127313418 @default.
- W3091837332 hasConceptScore W3091837332C17409809 @default.
- W3091837332 hasConceptScore W3091837332C185592680 @default.
- W3091837332 hasConceptScore W3091837332C187320778 @default.