Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091890796> ?p ?o ?g. }
- W3091890796 endingPage "110543" @default.
- W3091890796 startingPage "110543" @default.
- W3091890796 abstract "General circulation models (GCM) have been used by researchers to assess the effect of climate change in different fields of study. In the case of building energy performance, GCMs can be used to evaluate future building energy performance through simulations. However, a key issue with the use of GCM data in building energy simulation is the inadequate resolution and bias of the data. Therefore, in order to use this data for simulation purposes and better predict future building performance, further processing is required. The first challenge is that the GCMs are usually biased, which means a considerable deviation can be found when the historical GCM data is compared to station observed weather data. The second challenge is that the GCM data has daily temporal resolution rather than the hourly resolution required in building energy simulation. In order to utilize GCM data to estimate future building performance through simulation, the current study suggests a workflow that can be applied to climate change data. First, a bias-correction technique, known as the quantile-quantile method, is applied to remove the bias in the data in order to adapt GCMs to a specific location. The study then uses a hybrid classification-regression model to downscale the bias-corrected GCM data to generate future weather data at an hourly resolution for building energy simulation. In this case, the hybrid model is structured as a combined model, where a classification model serves as the main model together with an auxiliary regression model for cases when data is beyond the range of observed values. The proposed workflow uses observed weather data to determine similar weather patterns from historical data and use it to generate future weather data, contrary to previous studies, which use artificially generated data. However, in cases where the future GCM data showed temperatures ranging outside of the observed data, the study applied a trained regression model to generate hourly weather data. The proposed workflow enables users to generate future weather files year by year under different climate change scenarios and, consequently, extreme weather characteristics are preserved for extreme or reliability analysis and design optimization." @default.
- W3091890796 created "2020-10-15" @default.
- W3091890796 creator A5007505312 @default.
- W3091890796 creator A5061847136 @default.
- W3091890796 creator A5082283372 @default.
- W3091890796 date "2021-01-01" @default.
- W3091890796 modified "2023-10-17" @default.
- W3091890796 title "Generating future weather files under climate change scenarios to support building energy simulation – A machine learning approach" @default.
- W3091890796 cites W1976222123 @default.
- W3091890796 cites W1980918021 @default.
- W3091890796 cites W1993991903 @default.
- W3091890796 cites W1995735211 @default.
- W3091890796 cites W2007460316 @default.
- W3091890796 cites W2017741463 @default.
- W3091890796 cites W2017988814 @default.
- W3091890796 cites W2028778970 @default.
- W3091890796 cites W2039322240 @default.
- W3091890796 cites W2045782642 @default.
- W3091890796 cites W2046673543 @default.
- W3091890796 cites W2047081748 @default.
- W3091890796 cites W2060551910 @default.
- W3091890796 cites W2093141926 @default.
- W3091890796 cites W2101036997 @default.
- W3091890796 cites W2412399029 @default.
- W3091890796 cites W2418443295 @default.
- W3091890796 cites W2522371509 @default.
- W3091890796 cites W2570707240 @default.
- W3091890796 cites W2605416593 @default.
- W3091890796 cites W2738268582 @default.
- W3091890796 cites W2794186493 @default.
- W3091890796 cites W2804158385 @default.
- W3091890796 cites W2809346184 @default.
- W3091890796 cites W2911964244 @default.
- W3091890796 cites W2912770354 @default.
- W3091890796 cites W2998565715 @default.
- W3091890796 cites W3047804850 @default.
- W3091890796 cites W4241840196 @default.
- W3091890796 doi "https://doi.org/10.1016/j.enbuild.2020.110543" @default.
- W3091890796 hasPublicationYear "2021" @default.
- W3091890796 type Work @default.
- W3091890796 sameAs 3091890796 @default.
- W3091890796 citedByCount "32" @default.
- W3091890796 countsByYear W30918907962020 @default.
- W3091890796 countsByYear W30918907962021 @default.
- W3091890796 countsByYear W30918907962022 @default.
- W3091890796 countsByYear W30918907962023 @default.
- W3091890796 crossrefType "journal-article" @default.
- W3091890796 hasAuthorship W3091890796A5007505312 @default.
- W3091890796 hasAuthorship W3091890796A5061847136 @default.
- W3091890796 hasAuthorship W3091890796A5082283372 @default.
- W3091890796 hasConcept C105795698 @default.
- W3091890796 hasConcept C118671147 @default.
- W3091890796 hasConcept C121332964 @default.
- W3091890796 hasConcept C124101348 @default.
- W3091890796 hasConcept C127413603 @default.
- W3091890796 hasConcept C132651083 @default.
- W3091890796 hasConcept C141452985 @default.
- W3091890796 hasConcept C143742823 @default.
- W3091890796 hasConcept C146978453 @default.
- W3091890796 hasConcept C149782125 @default.
- W3091890796 hasConcept C153294291 @default.
- W3091890796 hasConcept C168754636 @default.
- W3091890796 hasConcept C186370098 @default.
- W3091890796 hasConcept C18903297 @default.
- W3091890796 hasConcept C204323151 @default.
- W3091890796 hasConcept C33923547 @default.
- W3091890796 hasConcept C41008148 @default.
- W3091890796 hasConcept C86803240 @default.
- W3091890796 hasConceptScore W3091890796C105795698 @default.
- W3091890796 hasConceptScore W3091890796C118671147 @default.
- W3091890796 hasConceptScore W3091890796C121332964 @default.
- W3091890796 hasConceptScore W3091890796C124101348 @default.
- W3091890796 hasConceptScore W3091890796C127413603 @default.
- W3091890796 hasConceptScore W3091890796C132651083 @default.
- W3091890796 hasConceptScore W3091890796C141452985 @default.
- W3091890796 hasConceptScore W3091890796C143742823 @default.
- W3091890796 hasConceptScore W3091890796C146978453 @default.
- W3091890796 hasConceptScore W3091890796C149782125 @default.
- W3091890796 hasConceptScore W3091890796C153294291 @default.
- W3091890796 hasConceptScore W3091890796C168754636 @default.
- W3091890796 hasConceptScore W3091890796C186370098 @default.
- W3091890796 hasConceptScore W3091890796C18903297 @default.
- W3091890796 hasConceptScore W3091890796C204323151 @default.
- W3091890796 hasConceptScore W3091890796C33923547 @default.
- W3091890796 hasConceptScore W3091890796C41008148 @default.
- W3091890796 hasConceptScore W3091890796C86803240 @default.
- W3091890796 hasLocation W30918907961 @default.
- W3091890796 hasOpenAccess W3091890796 @default.
- W3091890796 hasPrimaryLocation W30918907961 @default.
- W3091890796 hasRelatedWork W1967255190 @default.
- W3091890796 hasRelatedWork W1996264081 @default.
- W3091890796 hasRelatedWork W2007317869 @default.
- W3091890796 hasRelatedWork W2075202554 @default.
- W3091890796 hasRelatedWork W2292902007 @default.
- W3091890796 hasRelatedWork W2368606649 @default.
- W3091890796 hasRelatedWork W2808387486 @default.
- W3091890796 hasRelatedWork W2989374821 @default.
- W3091890796 hasRelatedWork W3088171182 @default.