Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091933671> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3091933671 endingPage "54" @default.
- W3091933671 startingPage "54" @default.
- W3091933671 abstract "Purpose: We proposed a deep convolutional neural network (CNN), named Retinal Fluid Segmentation Network (ReF-Net) to segment volumetric retinal fluid on optical coherence tomography (OCT) volume. Methods: 3 x 3-mm OCT scans were acquired on one eye by a 70-kHz OCT commercial AngioVue system (RTVue-XR; Optovue, Inc.) from 51 participants in a clinical diabetic retinopathy (DR) study (45 with retinal edema and 6 healthy controls). A CNN with U-Net-like architecture was constructed to detect and segment the retinal fluid. Cross-sectional OCT and angiography (OCTA) scans were used for training and testing ReF-Net. The effect of including OCTA data for retinal fluid segmentation was investigated in this study. Volumetric retinal fluid can be constructed using the output of ReF-Net. Area-under-Receiver-Operating-Characteristic-curve (AROC), intersection-over-union (IoU), and F1-score were calculated to evaluate the performance of ReF-Net. Results: ReF-Net shows high accuracy (F1 = 0.864 +/- 0.084) in retinal fluid segmentation. The performance can be further improved (F1 = 0.892 +/- 0.038) by including information from both OCTA and structural OCT. ReF-Net also shows strong robustness to shadow artifacts. Volumetric retinal fluid can provide more comprehensive information than the 2D area, whether cross-sectional or en face projections. Conclusions: A deep-learning-based method can accurately segment retinal fluid volumetrically on OCT/OCTA scans with strong robustness to shadow artifacts. OCTA data can improve retinal fluid segmentation. Volumetric representations of retinal fluid are superior to 2D projections. Translational Relevance: Using a deep learning method to segment retinal fluid volumetrically has the potential to improve the diagnostic accuracy of diabetic macular edema by OCT systems." @default.
- W3091933671 created "2020-10-15" @default.
- W3091933671 creator A5027484815 @default.
- W3091933671 creator A5049831260 @default.
- W3091933671 creator A5055560750 @default.
- W3091933671 creator A5063980606 @default.
- W3091933671 creator A5075877965 @default.
- W3091933671 creator A5086120758 @default.
- W3091933671 date "2020-10-08" @default.
- W3091933671 modified "2023-10-17" @default.
- W3091933671 title "Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning" @default.
- W3091933671 cites W1971041643 @default.
- W3091933671 cites W1992868980 @default.
- W3091933671 cites W2020281235 @default.
- W3091933671 cites W2034306361 @default.
- W3091933671 cites W2129943828 @default.
- W3091933671 cites W2319638030 @default.
- W3091933671 cites W2412782625 @default.
- W3091933671 cites W2468715970 @default.
- W3091933671 cites W2520557556 @default.
- W3091933671 cites W2588830496 @default.
- W3091933671 cites W2592517646 @default.
- W3091933671 cites W2608854843 @default.
- W3091933671 cites W2737035471 @default.
- W3091933671 cites W2767373868 @default.
- W3091933671 cites W2772059204 @default.
- W3091933671 cites W2792141483 @default.
- W3091933671 cites W2806398633 @default.
- W3091933671 cites W2888623473 @default.
- W3091933671 cites W2895460990 @default.
- W3091933671 cites W2917393555 @default.
- W3091933671 cites W2953273677 @default.
- W3091933671 cites W2964015468 @default.
- W3091933671 cites W2966347734 @default.
- W3091933671 cites W2995126341 @default.
- W3091933671 cites W2997598994 @default.
- W3091933671 cites W3028361198 @default.
- W3091933671 doi "https://doi.org/10.1167/tvst.9.2.54" @default.
- W3091933671 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7552937" @default.
- W3091933671 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33110708" @default.
- W3091933671 hasPublicationYear "2020" @default.
- W3091933671 type Work @default.
- W3091933671 sameAs 3091933671 @default.
- W3091933671 citedByCount "35" @default.
- W3091933671 countsByYear W30919336712021 @default.
- W3091933671 countsByYear W30919336712022 @default.
- W3091933671 countsByYear W30919336712023 @default.
- W3091933671 crossrefType "journal-article" @default.
- W3091933671 hasAuthorship W3091933671A5027484815 @default.
- W3091933671 hasAuthorship W3091933671A5049831260 @default.
- W3091933671 hasAuthorship W3091933671A5055560750 @default.
- W3091933671 hasAuthorship W3091933671A5063980606 @default.
- W3091933671 hasAuthorship W3091933671A5075877965 @default.
- W3091933671 hasAuthorship W3091933671A5086120758 @default.
- W3091933671 hasBestOaLocation W30919336711 @default.
- W3091933671 hasConcept C118487528 @default.
- W3091933671 hasConcept C154945302 @default.
- W3091933671 hasConcept C2778818243 @default.
- W3091933671 hasConcept C2780827179 @default.
- W3091933671 hasConcept C41008148 @default.
- W3091933671 hasConcept C71924100 @default.
- W3091933671 hasConcept C81363708 @default.
- W3091933671 hasConcept C89600930 @default.
- W3091933671 hasConceptScore W3091933671C118487528 @default.
- W3091933671 hasConceptScore W3091933671C154945302 @default.
- W3091933671 hasConceptScore W3091933671C2778818243 @default.
- W3091933671 hasConceptScore W3091933671C2780827179 @default.
- W3091933671 hasConceptScore W3091933671C41008148 @default.
- W3091933671 hasConceptScore W3091933671C71924100 @default.
- W3091933671 hasConceptScore W3091933671C81363708 @default.
- W3091933671 hasConceptScore W3091933671C89600930 @default.
- W3091933671 hasIssue "2" @default.
- W3091933671 hasLocation W30919336711 @default.
- W3091933671 hasLocation W30919336712 @default.
- W3091933671 hasLocation W30919336713 @default.
- W3091933671 hasLocation W30919336714 @default.
- W3091933671 hasOpenAccess W3091933671 @default.
- W3091933671 hasPrimaryLocation W30919336711 @default.
- W3091933671 hasRelatedWork W1000914229 @default.
- W3091933671 hasRelatedWork W1014602304 @default.
- W3091933671 hasRelatedWork W1033756233 @default.
- W3091933671 hasRelatedWork W2052131104 @default.
- W3091933671 hasRelatedWork W2323668004 @default.
- W3091933671 hasRelatedWork W2348498086 @default.
- W3091933671 hasRelatedWork W3021342607 @default.
- W3091933671 hasRelatedWork W3093461874 @default.
- W3091933671 hasRelatedWork W806426592 @default.
- W3091933671 hasRelatedWork W970126872 @default.
- W3091933671 hasVolume "9" @default.
- W3091933671 isParatext "false" @default.
- W3091933671 isRetracted "false" @default.
- W3091933671 magId "3091933671" @default.
- W3091933671 workType "article" @default.