Matches in SemOpenAlex for { <https://semopenalex.org/work/W3091943187> ?p ?o ?g. }
- W3091943187 endingPage "102526" @default.
- W3091943187 startingPage "102526" @default.
- W3091943187 abstract "• We review the ML literature used for climate change mitigation in cities. • We find a rapidly growing literature base and discern algorithmic approaches. • Existing researches focuses on increasing efficiency. • Machine learning can be effectively utilized for low-carbon urban planning. Artificial intelligence and machine learning are transforming scientific disciplines, but their full potential for climate change mitigation remains elusive. Here, we conduct a systematic review of applied machine learning studies that are of relevance for climate change mitigation, focusing specifically on the fields of remote sensing, urban transportation, and buildings. The relevant body of literature spans twenty years and is growing exponentially. We show that the emergence of big data and machine learning methods enables climate solution research to overcome generic recommendations and provide policy solutions at urban, street, building and household scale, adapted to specific contexts, but scalable to global mitigation potentials. We suggest a meta-algorithmic architecture and framework for using machine learning to optimize urban planning for accelerating, improving and transforming urban infrastructure provision." @default.
- W3091943187 created "2020-10-15" @default.
- W3091943187 creator A5042316600 @default.
- W3091943187 creator A5078552854 @default.
- W3091943187 date "2021-01-01" @default.
- W3091943187 modified "2023-10-01" @default.
- W3091943187 title "Machine learning for geographically differentiated climate change mitigation in urban areas" @default.
- W3091943187 cites W1479651931 @default.
- W3091943187 cites W1766676081 @default.
- W3091943187 cites W1902027874 @default.
- W3091943187 cites W1975729926 @default.
- W3091943187 cites W1989649756 @default.
- W3091943187 cites W1994433187 @default.
- W3091943187 cites W2001323582 @default.
- W3091943187 cites W2004165981 @default.
- W3091943187 cites W2004517062 @default.
- W3091943187 cites W2006554909 @default.
- W3091943187 cites W2007490890 @default.
- W3091943187 cites W2010599066 @default.
- W3091943187 cites W2010949020 @default.
- W3091943187 cites W2018851888 @default.
- W3091943187 cites W2063935068 @default.
- W3091943187 cites W2086154193 @default.
- W3091943187 cites W2090861152 @default.
- W3091943187 cites W2098914534 @default.
- W3091943187 cites W2100930549 @default.
- W3091943187 cites W2114092915 @default.
- W3091943187 cites W2115240023 @default.
- W3091943187 cites W2115733720 @default.
- W3091943187 cites W2123954521 @default.
- W3091943187 cites W2142453803 @default.
- W3091943187 cites W2149298154 @default.
- W3091943187 cites W2164433556 @default.
- W3091943187 cites W2166394891 @default.
- W3091943187 cites W2188245729 @default.
- W3091943187 cites W2193618146 @default.
- W3091943187 cites W2203837178 @default.
- W3091943187 cites W2225301988 @default.
- W3091943187 cites W2259886736 @default.
- W3091943187 cites W2281071090 @default.
- W3091943187 cites W2295560269 @default.
- W3091943187 cites W2317595875 @default.
- W3091943187 cites W2329258917 @default.
- W3091943187 cites W2344290876 @default.
- W3091943187 cites W2375237876 @default.
- W3091943187 cites W2493182119 @default.
- W3091943187 cites W2509235515 @default.
- W3091943187 cites W2513506629 @default.
- W3091943187 cites W2514706874 @default.
- W3091943187 cites W2524966155 @default.
- W3091943187 cites W2551348166 @default.
- W3091943187 cites W2571085377 @default.
- W3091943187 cites W2571712648 @default.
- W3091943187 cites W2583189593 @default.
- W3091943187 cites W2584924584 @default.
- W3091943187 cites W2603932396 @default.
- W3091943187 cites W2605391457 @default.
- W3091943187 cites W2612627732 @default.
- W3091943187 cites W2621359646 @default.
- W3091943187 cites W2624779149 @default.
- W3091943187 cites W2657631929 @default.
- W3091943187 cites W2725582697 @default.
- W3091943187 cites W2748337276 @default.
- W3091943187 cites W2756237131 @default.
- W3091943187 cites W2761875693 @default.
- W3091943187 cites W2761909754 @default.
- W3091943187 cites W2766317021 @default.
- W3091943187 cites W2770820547 @default.
- W3091943187 cites W2773069998 @default.
- W3091943187 cites W2774636080 @default.
- W3091943187 cites W2781700236 @default.
- W3091943187 cites W2782522152 @default.
- W3091943187 cites W2787117522 @default.
- W3091943187 cites W2788000854 @default.
- W3091943187 cites W2791256869 @default.
- W3091943187 cites W2791543041 @default.
- W3091943187 cites W2792046648 @default.
- W3091943187 cites W2793358956 @default.
- W3091943187 cites W2793585826 @default.
- W3091943187 cites W2795308205 @default.
- W3091943187 cites W2799612587 @default.
- W3091943187 cites W2800190939 @default.
- W3091943187 cites W2800755917 @default.
- W3091943187 cites W2801500301 @default.
- W3091943187 cites W2804506005 @default.
- W3091943187 cites W2805443795 @default.
- W3091943187 cites W2806066720 @default.
- W3091943187 cites W2810999103 @default.
- W3091943187 cites W2830368892 @default.
- W3091943187 cites W2883073525 @default.
- W3091943187 cites W2885544936 @default.
- W3091943187 cites W2886287742 @default.
- W3091943187 cites W2889891709 @default.
- W3091943187 cites W2889944024 @default.
- W3091943187 cites W2897612470 @default.
- W3091943187 cites W2902543072 @default.
- W3091943187 cites W2904145953 @default.
- W3091943187 cites W2910705748 @default.