Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092022274> ?p ?o ?g. }
- W3092022274 endingPage "181879" @default.
- W3092022274 startingPage "181855" @default.
- W3092022274 abstract "With the rapid development of machine learning, its powerful function in the machine vision field is increasingly reflected. The combination of machine vision and robotics to achieve the same precise and fast grasping as that of humans requires high-precision target detection and recognition, location and reasonable grasp strategy generation, which is the ultimate goal of global researchers and one of the prerequisites for the large-scale application of robots. Traditional machine learning has a long history and good achievements in the field of image processing and robot control. The CNN (convolutional neural network) algorithm realizes training of large-scale image datasets, solves the disadvantages of traditional machine learning in large datasets, and greatly improves accuracy, thereby positioning CNNs as a global research hotspot. However, the increasing difficulty of labeled data acquisition limits their development. Therefore, unsupervised learning, self-supervised learning and reinforcement learning, which are less dependent on labeled data, have also undergone rapid development and achieved good performance in the fields of image processing and robot capture. According to the inherent defects of vision, this paper summarizes the research achievements of tactile feedback in the fields of target recognition and robot grasping and finds that the combination of vision and tactile feedback can improve the success rate and robustness of robot grasping. This paper provides a systematic summary and analysis of the research status of machine vision and tactile feedback in the field of robot grasping and establishes a reasonable reference for future research." @default.
- W3092022274 created "2020-10-15" @default.
- W3092022274 creator A5007809342 @default.
- W3092022274 creator A5009231083 @default.
- W3092022274 creator A5017102094 @default.
- W3092022274 creator A5022632720 @default.
- W3092022274 creator A5033073680 @default.
- W3092022274 creator A5074326967 @default.
- W3092022274 date "2020-01-01" @default.
- W3092022274 modified "2023-10-10" @default.
- W3092022274 title "Object Detection Recognition and Robot Grasping Based on Machine Learning: A Survey" @default.
- W3092022274 cites W1584775822 @default.
- W3092022274 cites W1603160074 @default.
- W3092022274 cites W1954018476 @default.
- W3092022274 cites W1966335730 @default.
- W3092022274 cites W1999156278 @default.
- W3092022274 cites W2004087388 @default.
- W3092022274 cites W2006273250 @default.
- W3092022274 cites W2013995856 @default.
- W3092022274 cites W2036106903 @default.
- W3092022274 cites W2038500908 @default.
- W3092022274 cites W2047887570 @default.
- W3092022274 cites W2048868165 @default.
- W3092022274 cites W2048972052 @default.
- W3092022274 cites W2060698516 @default.
- W3092022274 cites W2063461900 @default.
- W3092022274 cites W2064355448 @default.
- W3092022274 cites W2071735373 @default.
- W3092022274 cites W2072761058 @default.
- W3092022274 cites W2073522055 @default.
- W3092022274 cites W2087044413 @default.
- W3092022274 cites W2089806275 @default.
- W3092022274 cites W2093904572 @default.
- W3092022274 cites W2096195258 @default.
- W3092022274 cites W2097117768 @default.
- W3092022274 cites W2100835628 @default.
- W3092022274 cites W2102478363 @default.
- W3092022274 cites W2110112487 @default.
- W3092022274 cites W2112796928 @default.
- W3092022274 cites W2113489050 @default.
- W3092022274 cites W2116262873 @default.
- W3092022274 cites W2119926576 @default.
- W3092022274 cites W2123727571 @default.
- W3092022274 cites W2125627762 @default.
- W3092022274 cites W2134369348 @default.
- W3092022274 cites W2144750545 @default.
- W3092022274 cites W2156243072 @default.
- W3092022274 cites W2156761667 @default.
- W3092022274 cites W2161064981 @default.
- W3092022274 cites W2161739581 @default.
- W3092022274 cites W2168856390 @default.
- W3092022274 cites W2194775991 @default.
- W3092022274 cites W2212768468 @default.
- W3092022274 cites W2241460726 @default.
- W3092022274 cites W2263753685 @default.
- W3092022274 cites W2281770328 @default.
- W3092022274 cites W2283608423 @default.
- W3092022274 cites W2295747340 @default.
- W3092022274 cites W2302439267 @default.
- W3092022274 cites W2305225441 @default.
- W3092022274 cites W2317595875 @default.
- W3092022274 cites W2328191957 @default.
- W3092022274 cites W2333449899 @default.
- W3092022274 cites W2342540026 @default.
- W3092022274 cites W2342724584 @default.
- W3092022274 cites W2343184955 @default.
- W3092022274 cites W2344531169 @default.
- W3092022274 cites W2345010043 @default.
- W3092022274 cites W2361494151 @default.
- W3092022274 cites W2399310610 @default.
- W3092022274 cites W2405644564 @default.
- W3092022274 cites W2406081291 @default.
- W3092022274 cites W2419896268 @default.
- W3092022274 cites W2421020186 @default.
- W3092022274 cites W2524771588 @default.
- W3092022274 cites W2540202891 @default.
- W3092022274 cites W2554638890 @default.
- W3092022274 cites W2558625610 @default.
- W3092022274 cites W2563424502 @default.
- W3092022274 cites W2575705757 @default.
- W3092022274 cites W2592538810 @default.
- W3092022274 cites W2608091131 @default.
- W3092022274 cites W2618530766 @default.
- W3092022274 cites W2639200898 @default.
- W3092022274 cites W2687523990 @default.
- W3092022274 cites W2722424650 @default.
- W3092022274 cites W2736762515 @default.
- W3092022274 cites W2750110103 @default.
- W3092022274 cites W2751642492 @default.
- W3092022274 cites W2753971009 @default.
- W3092022274 cites W2755015065 @default.
- W3092022274 cites W2760798442 @default.
- W3092022274 cites W2765362453 @default.
- W3092022274 cites W2765545174 @default.
- W3092022274 cites W2766597266 @default.
- W3092022274 cites W2768817490 @default.
- W3092022274 cites W2770146267 @default.
- W3092022274 cites W2782850433 @default.