Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092076665> ?p ?o ?g. }
- W3092076665 endingPage "492" @default.
- W3092076665 startingPage "479" @default.
- W3092076665 abstract "Artificial intelligence (AI) advancements have significant implications for medical imaging. Stroke is the leading cause of disability and the fifth leading cause of death in the United States. AI applications for stroke imaging are a topic of intense research. AI techniques are well-suited for dealing with vast amounts of stroke imaging data and a large number of multidisciplinary approaches used in classification, risk assessment, segmentation tasks, diagnosis, prognosis, and even prediction of therapy responses. This article addresses this topic and seeks to present an overview of machine learning and/or deep learning applied to stroke imaging." @default.
- W3092076665 created "2020-10-15" @default.
- W3092076665 creator A5000937822 @default.
- W3092076665 creator A5004210553 @default.
- W3092076665 creator A5009601688 @default.
- W3092076665 creator A5011090841 @default.
- W3092076665 creator A5021957840 @default.
- W3092076665 creator A5026793625 @default.
- W3092076665 creator A5037249379 @default.
- W3092076665 creator A5065577825 @default.
- W3092076665 date "2020-11-01" @default.
- W3092076665 modified "2023-09-24" @default.
- W3092076665 title "Artificial Intelligence and Stroke Imaging" @default.
- W3092076665 cites W1978902094 @default.
- W3092076665 cites W2048055195 @default.
- W3092076665 cites W2060529732 @default.
- W3092076665 cites W2081295822 @default.
- W3092076665 cites W2081704737 @default.
- W3092076665 cites W2083540539 @default.
- W3092076665 cites W2104657667 @default.
- W3092076665 cites W2132311731 @default.
- W3092076665 cites W2217077692 @default.
- W3092076665 cites W2301358467 @default.
- W3092076665 cites W2341509179 @default.
- W3092076665 cites W2343172899 @default.
- W3092076665 cites W2484736472 @default.
- W3092076665 cites W2534299759 @default.
- W3092076665 cites W2556985958 @default.
- W3092076665 cites W2558092854 @default.
- W3092076665 cites W2588271337 @default.
- W3092076665 cites W2592929672 @default.
- W3092076665 cites W2725984455 @default.
- W3092076665 cites W2743780012 @default.
- W3092076665 cites W2760314420 @default.
- W3092076665 cites W2770835535 @default.
- W3092076665 cites W2776220900 @default.
- W3092076665 cites W2779664341 @default.
- W3092076665 cites W2786907498 @default.
- W3092076665 cites W2794391878 @default.
- W3092076665 cites W2800807461 @default.
- W3092076665 cites W2800835849 @default.
- W3092076665 cites W2803760365 @default.
- W3092076665 cites W2807044098 @default.
- W3092076665 cites W2809373841 @default.
- W3092076665 cites W2885067380 @default.
- W3092076665 cites W2885688423 @default.
- W3092076665 cites W2888132754 @default.
- W3092076665 cites W2890354008 @default.
- W3092076665 cites W2892584940 @default.
- W3092076665 cites W2892915591 @default.
- W3092076665 cites W2893462288 @default.
- W3092076665 cites W2895687530 @default.
- W3092076665 cites W2896817483 @default.
- W3092076665 cites W2898554342 @default.
- W3092076665 cites W2899740939 @default.
- W3092076665 cites W2900702386 @default.
- W3092076665 cites W2901826627 @default.
- W3092076665 cites W2902345415 @default.
- W3092076665 cites W2902558766 @default.
- W3092076665 cites W2902620820 @default.
- W3092076665 cites W2902793054 @default.
- W3092076665 cites W2911850139 @default.
- W3092076665 cites W2911997543 @default.
- W3092076665 cites W2912810649 @default.
- W3092076665 cites W2916323829 @default.
- W3092076665 cites W2919207633 @default.
- W3092076665 cites W2919356958 @default.
- W3092076665 cites W2920218276 @default.
- W3092076665 cites W2921843266 @default.
- W3092076665 cites W2937638023 @default.
- W3092076665 cites W2938072790 @default.
- W3092076665 cites W2943767668 @default.
- W3092076665 cites W2944775438 @default.
- W3092076665 cites W2945000911 @default.
- W3092076665 cites W2945830658 @default.
- W3092076665 cites W2946457696 @default.
- W3092076665 cites W2950669388 @default.
- W3092076665 cites W2951817526 @default.
- W3092076665 cites W2952658425 @default.
- W3092076665 cites W2955252073 @default.
- W3092076665 cites W2963489244 @default.
- W3092076665 cites W2964657045 @default.
- W3092076665 cites W2966900272 @default.
- W3092076665 cites W2968247392 @default.
- W3092076665 cites W2977021417 @default.
- W3092076665 cites W4242760118 @default.
- W3092076665 cites W4244821078 @default.
- W3092076665 doi "https://doi.org/10.1016/j.nic.2020.07.001" @default.
- W3092076665 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33038998" @default.
- W3092076665 hasPublicationYear "2020" @default.
- W3092076665 type Work @default.
- W3092076665 sameAs 3092076665 @default.
- W3092076665 citedByCount "9" @default.
- W3092076665 countsByYear W30920766652021 @default.
- W3092076665 countsByYear W30920766652022 @default.
- W3092076665 countsByYear W30920766652023 @default.
- W3092076665 crossrefType "journal-article" @default.
- W3092076665 hasAuthorship W3092076665A5000937822 @default.