Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092077512> ?p ?o ?g. }
- W3092077512 abstract "Abstract Background It is necessary to consider myopic optic disc tilt as it seriously impacts normal ocular parameters. However, ophthalmologic measurements are within inter-observer variability and time-consuming to get. This study aimed to develop and evaluate deep learning models that automatically recognize a myopic tilted optic disc in fundus photography. Methods This study used 937 fundus photographs of patients with normal or myopic tilted disc, collected from Samsung Medical Center between April 2016 and December 2018. We developed an automated computer-aided recognition system for optic disc tilt on color fundus photographs via a deep learning algorithm. We preprocessed all images with two image resizing techniques. GoogleNet Inception-v3 architecture was implemented. The performances of the models were compared with the human examiner’s results. Activation map visualization was qualitatively analyzed using the generalized visualization technique based on gradient-weighted class activation mapping (Grad-CAM++). Results Nine hundred thirty-seven fundus images were collected and annotated from 509 subjects. In total, 397 images from eyes with tilted optic discs and 540 images from eyes with non-tilted optic discs were analyzed. We included both eye data of most included patients and analyzed them separately in this study. For comparison, we conducted training using two aspect ratios: the simple resized dataset and the original aspect ratio (AR) preserving dataset, and the impacts of the augmentations for both datasets were evaluated. The constructed deep learning models for myopic optic disc tilt achieved the best results when simple image-resizing and augmentation were used. The results were associated with an area under the receiver operating characteristic curve (AUC) of 0.978 ± 0.008, an accuracy of 0.960 ± 0.010, sensitivity of 0.937 ± 0.023, and specificity of 0.963 ± 0.015. The heatmaps revealed that the model could effectively identify the locations of the optic discs, the superior retinal vascular arcades, and the retinal maculae. Conclusions We developed an automated deep learning-based system to detect optic disc tilt. The model demonstrated excellent agreement with the previous clinical criteria, and the results are promising for developing future programs to adjust and identify the effect of optic disc tilt on ophthalmic measurements." @default.
- W3092077512 created "2020-10-15" @default.
- W3092077512 creator A5012465136 @default.
- W3092077512 creator A5022590014 @default.
- W3092077512 creator A5031793369 @default.
- W3092077512 creator A5038429436 @default.
- W3092077512 creator A5043690102 @default.
- W3092077512 creator A5049679787 @default.
- W3092077512 creator A5055992794 @default.
- W3092077512 creator A5086501334 @default.
- W3092077512 creator A5089379414 @default.
- W3092077512 creator A5089638044 @default.
- W3092077512 date "2020-10-09" @default.
- W3092077512 modified "2023-10-17" @default.
- W3092077512 title "Computer-aided recognition of myopic tilted optic disc using deep learning algorithms in fundus photography" @default.
- W3092077512 cites W1528415717 @default.
- W3092077512 cites W1677182931 @default.
- W3092077512 cites W1971907908 @default.
- W3092077512 cites W1988710682 @default.
- W3092077512 cites W2005450884 @default.
- W3092077512 cites W2007051521 @default.
- W3092077512 cites W2014479717 @default.
- W3092077512 cites W2020803089 @default.
- W3092077512 cites W2056820089 @default.
- W3092077512 cites W2061350580 @default.
- W3092077512 cites W2072393500 @default.
- W3092077512 cites W2085946009 @default.
- W3092077512 cites W2090782056 @default.
- W3092077512 cites W2093956095 @default.
- W3092077512 cites W2094831796 @default.
- W3092077512 cites W2109255472 @default.
- W3092077512 cites W2117539524 @default.
- W3092077512 cites W2121659593 @default.
- W3092077512 cites W2121798202 @default.
- W3092077512 cites W2155889930 @default.
- W3092077512 cites W2160921898 @default.
- W3092077512 cites W2164178382 @default.
- W3092077512 cites W2180315225 @default.
- W3092077512 cites W2183341477 @default.
- W3092077512 cites W2253429366 @default.
- W3092077512 cites W2263495255 @default.
- W3092077512 cites W2529153069 @default.
- W3092077512 cites W2533800772 @default.
- W3092077512 cites W2557738935 @default.
- W3092077512 cites W2580110234 @default.
- W3092077512 cites W2582100654 @default.
- W3092077512 cites W2592929672 @default.
- W3092077512 cites W2657631929 @default.
- W3092077512 cites W2734637624 @default.
- W3092077512 cites W2758333670 @default.
- W3092077512 cites W2765793020 @default.
- W3092077512 cites W2766811088 @default.
- W3092077512 cites W2772246530 @default.
- W3092077512 cites W2782773047 @default.
- W3092077512 cites W2889387575 @default.
- W3092077512 cites W2899951262 @default.
- W3092077512 cites W2905331689 @default.
- W3092077512 cites W2919358988 @default.
- W3092077512 cites W2946839276 @default.
- W3092077512 cites W2962858109 @default.
- W3092077512 cites W3104887532 @default.
- W3092077512 doi "https://doi.org/10.1186/s12886-020-01657-w" @default.
- W3092077512 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7547463" @default.
- W3092077512 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33036582" @default.
- W3092077512 hasPublicationYear "2020" @default.
- W3092077512 type Work @default.
- W3092077512 sameAs 3092077512 @default.
- W3092077512 citedByCount "12" @default.
- W3092077512 countsByYear W30920775122020 @default.
- W3092077512 countsByYear W30920775122021 @default.
- W3092077512 countsByYear W30920775122022 @default.
- W3092077512 countsByYear W30920775122023 @default.
- W3092077512 crossrefType "journal-article" @default.
- W3092077512 hasAuthorship W3092077512A5012465136 @default.
- W3092077512 hasAuthorship W3092077512A5022590014 @default.
- W3092077512 hasAuthorship W3092077512A5031793369 @default.
- W3092077512 hasAuthorship W3092077512A5038429436 @default.
- W3092077512 hasAuthorship W3092077512A5043690102 @default.
- W3092077512 hasAuthorship W3092077512A5049679787 @default.
- W3092077512 hasAuthorship W3092077512A5055992794 @default.
- W3092077512 hasAuthorship W3092077512A5086501334 @default.
- W3092077512 hasAuthorship W3092077512A5089379414 @default.
- W3092077512 hasAuthorship W3092077512A5089638044 @default.
- W3092077512 hasBestOaLocation W30920775121 @default.
- W3092077512 hasConcept C104317684 @default.
- W3092077512 hasConcept C114696181 @default.
- W3092077512 hasConcept C118487528 @default.
- W3092077512 hasConcept C119657128 @default.
- W3092077512 hasConcept C119767625 @default.
- W3092077512 hasConcept C127716648 @default.
- W3092077512 hasConcept C142362112 @default.
- W3092077512 hasConcept C153349607 @default.
- W3092077512 hasConcept C154945302 @default.
- W3092077512 hasConcept C185592680 @default.
- W3092077512 hasConcept C2524010 @default.
- W3092077512 hasConcept C2776391266 @default.
- W3092077512 hasConcept C2776474195 @default.
- W3092077512 hasConcept C2778257484 @default.
- W3092077512 hasConcept C2778527774 @default.
- W3092077512 hasConcept C2779735895 @default.