Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092080403> ?p ?o ?g. }
- W3092080403 endingPage "111615" @default.
- W3092080403 startingPage "111615" @default.
- W3092080403 abstract "Cellular therapy, whereby cells are transplanted to replace or repair damaged tissues and/or cells, is now becoming a viable therapeutic option to treat many human diseases. Silicones, such as polydimethylsiloxane (PDMS), consist of a biocompatible, inert, non-degradable synthetic polymer, characterized by the presence of a silicon‑oxygen‑silicon (Si-O-Si) linkage in the backbone. Silicones have been commonly used in several biomedical applications such as soft tissue implants, microfluidic devices, heart valves and 3D bioscaffolds. Silicone macroporous bioscaffolds can be made with open, interconnected pores which can house cells and facilitate the formation of a dense vascular network inside the bioscaffold to aid in its engraftment and integration into the host tissue. In this review, we will present various synthesis/fabrication techniques for silicone-based bioscaffolds and will discuss their assets and potential drawbacks. Furthermore, since cell attachment onto the surface of silicones can be limited due to their intrinsic high hydrophobicity, we will also discuss different techniques of surface modification. Finally, we will examine the physical (i.e. density , porosity , pore interconnectivity , wettability , elasticity , roughness ); mechanical ( tension , compression , hardness ); and chemical ( elemental composition-properties ) properties of silicone bioscaffolds and how these can be modulated to suit the needs for specific applications. • Polydimethyliloxane (PDMS) shows potential for use as 3D porous bioscaffolds. • PDMS bioscaffolds can be used for cellular therapies. • PDMS bioscaffolds needs to be modified to increase their hydrophilicity." @default.
- W3092080403 created "2020-10-15" @default.
- W3092080403 creator A5030942813 @default.
- W3092080403 creator A5053159199 @default.
- W3092080403 creator A5061102998 @default.
- W3092080403 creator A5085796940 @default.
- W3092080403 date "2021-02-01" @default.
- W3092080403 modified "2023-09-24" @default.
- W3092080403 title "Silicone-based bioscaffolds for cellular therapies" @default.
- W3092080403 cites W1928785183 @default.
- W3092080403 cites W1929173934 @default.
- W3092080403 cites W1933141815 @default.
- W3092080403 cites W1965500282 @default.
- W3092080403 cites W1969459266 @default.
- W3092080403 cites W1973089587 @default.
- W3092080403 cites W1973782589 @default.
- W3092080403 cites W1973791641 @default.
- W3092080403 cites W1974452230 @default.
- W3092080403 cites W1978818562 @default.
- W3092080403 cites W1979712769 @default.
- W3092080403 cites W1982226511 @default.
- W3092080403 cites W1982572781 @default.
- W3092080403 cites W1986064595 @default.
- W3092080403 cites W1986127775 @default.
- W3092080403 cites W1990371196 @default.
- W3092080403 cites W1994052943 @default.
- W3092080403 cites W1998061495 @default.
- W3092080403 cites W2003647820 @default.
- W3092080403 cites W2003950793 @default.
- W3092080403 cites W2003958703 @default.
- W3092080403 cites W2004167273 @default.
- W3092080403 cites W2004559225 @default.
- W3092080403 cites W2006495909 @default.
- W3092080403 cites W2006835321 @default.
- W3092080403 cites W2008033281 @default.
- W3092080403 cites W2011924650 @default.
- W3092080403 cites W2012924439 @default.
- W3092080403 cites W2014251245 @default.
- W3092080403 cites W2014498405 @default.
- W3092080403 cites W2017794463 @default.
- W3092080403 cites W2021625060 @default.
- W3092080403 cites W2021892220 @default.
- W3092080403 cites W2023979914 @default.
- W3092080403 cites W2026908430 @default.
- W3092080403 cites W2029925436 @default.
- W3092080403 cites W2030509793 @default.
- W3092080403 cites W2031732057 @default.
- W3092080403 cites W2034001373 @default.
- W3092080403 cites W2036746647 @default.
- W3092080403 cites W2039913091 @default.
- W3092080403 cites W2041146328 @default.
- W3092080403 cites W2047235060 @default.
- W3092080403 cites W2047806440 @default.
- W3092080403 cites W2048102975 @default.
- W3092080403 cites W2050875646 @default.
- W3092080403 cites W2061193359 @default.
- W3092080403 cites W2062609389 @default.
- W3092080403 cites W2078782272 @default.
- W3092080403 cites W2078797075 @default.
- W3092080403 cites W2082645091 @default.
- W3092080403 cites W2084924898 @default.
- W3092080403 cites W2087536903 @default.
- W3092080403 cites W2087771736 @default.
- W3092080403 cites W2088495047 @default.
- W3092080403 cites W2097038633 @default.
- W3092080403 cites W2098947128 @default.
- W3092080403 cites W2106565548 @default.
- W3092080403 cites W2110823262 @default.
- W3092080403 cites W2112348925 @default.
- W3092080403 cites W2115480244 @default.
- W3092080403 cites W2121999238 @default.
- W3092080403 cites W2122813788 @default.
- W3092080403 cites W2123456749 @default.
- W3092080403 cites W2124596139 @default.
- W3092080403 cites W2129392026 @default.
- W3092080403 cites W2134208433 @default.
- W3092080403 cites W2136057251 @default.
- W3092080403 cites W2151279342 @default.
- W3092080403 cites W2152585695 @default.
- W3092080403 cites W2156126035 @default.
- W3092080403 cites W2167865938 @default.
- W3092080403 cites W2172119289 @default.
- W3092080403 cites W2323199093 @default.
- W3092080403 cites W2327936343 @default.
- W3092080403 cites W2608947055 @default.
- W3092080403 cites W2682193417 @default.
- W3092080403 cites W2790550660 @default.
- W3092080403 cites W2801832360 @default.
- W3092080403 cites W2804099408 @default.
- W3092080403 cites W2895425711 @default.
- W3092080403 cites W2940557395 @default.
- W3092080403 cites W2998576628 @default.
- W3092080403 cites W3103881185 @default.
- W3092080403 cites W4247419735 @default.
- W3092080403 doi "https://doi.org/10.1016/j.msec.2020.111615" @default.
- W3092080403 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33321658" @default.
- W3092080403 hasPublicationYear "2021" @default.
- W3092080403 type Work @default.