Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092103025> ?p ?o ?g. }
- W3092103025 endingPage "39" @default.
- W3092103025 startingPage "1" @default.
- W3092103025 abstract "While recent years have witnessed a rapid growth of research papers on recommender system (RS) , most of the papers focus on inventing machine learning models to better fit user behavior data. However, user behavior data is observational rather than experimental. This makes various biases widely exist in the data, including but not limited to selection bias, position bias, exposure bias, and popularity bias. Blindly fitting the data without considering the inherent biases will result in many serious issues, e.g., the discrepancy between offline evaluation and online metrics, hurting user satisfaction and trust on the recommendation service, and so on. To transform the large volume of research models into practical improvements, it is highly urgent to explore the impacts of the biases and perform debiasing when necessary. When reviewing the papers that consider biases in RS, we find that, to our surprise, the studies are rather fragmented and lack a systematic organization. The terminology “bias” is widely used in the literature, but its definition is usually vague and even inconsistent across papers. This motivates us to provide a systematic survey of existing work on RS biases. In this paper, we first summarize seven types of biases in recommendation, along with their definitions and characteristics. We then provide a taxonomy to position and organize the existing work on recommendation debiasing. Finally, we identify some open challenges and envision some future directions, with the hope of inspiring more research work on this important yet less investigated topic. The summary of debiasing methods reviewed in this survey can be found at https://github.com/jiawei-chen/RecDebiasing ." @default.
- W3092103025 created "2020-10-15" @default.
- W3092103025 creator A5007017628 @default.
- W3092103025 creator A5028225823 @default.
- W3092103025 creator A5036726873 @default.
- W3092103025 creator A5038668215 @default.
- W3092103025 creator A5044936528 @default.
- W3092103025 creator A5051925942 @default.
- W3092103025 date "2023-02-07" @default.
- W3092103025 modified "2023-10-16" @default.
- W3092103025 title "Bias and Debias in Recommender System: A Survey and Future Directions" @default.
- W3092103025 cites W1224564842 @default.
- W3092103025 cites W1493044792 @default.
- W3092103025 cites W1648303880 @default.
- W3092103025 cites W1974360117 @default.
- W3092103025 cites W1984127251 @default.
- W3092103025 cites W1992549066 @default.
- W3092103025 cites W2006447892 @default.
- W3092103025 cites W2009205701 @default.
- W3092103025 cites W2013170277 @default.
- W3092103025 cites W2026019770 @default.
- W3092103025 cites W2124187902 @default.
- W3092103025 cites W2171557311 @default.
- W3092103025 cites W2253995343 @default.
- W3092103025 cites W2279385734 @default.
- W3092103025 cites W2323554062 @default.
- W3092103025 cites W2543154812 @default.
- W3092103025 cites W2550925836 @default.
- W3092103025 cites W2579393094 @default.
- W3092103025 cites W2787933113 @default.
- W3092103025 cites W2798460079 @default.
- W3092103025 cites W2798881875 @default.
- W3092103025 cites W2902572901 @default.
- W3092103025 cites W2906762886 @default.
- W3092103025 cites W2911802745 @default.
- W3092103025 cites W2912967843 @default.
- W3092103025 cites W2945357717 @default.
- W3092103025 cites W2958300421 @default.
- W3092103025 cites W2964031043 @default.
- W3092103025 cites W2965512832 @default.
- W3092103025 cites W2989872778 @default.
- W3092103025 cites W2998534896 @default.
- W3092103025 cites W3003609932 @default.
- W3092103025 cites W3004493409 @default.
- W3092103025 cites W3007094061 @default.
- W3092103025 cites W3012576969 @default.
- W3092103025 cites W3012600133 @default.
- W3092103025 cites W3023202929 @default.
- W3092103025 cites W3035446616 @default.
- W3092103025 cites W3037831233 @default.
- W3092103025 cites W3044963235 @default.
- W3092103025 cites W3083159507 @default.
- W3092103025 cites W3088301055 @default.
- W3092103025 cites W3088432326 @default.
- W3092103025 cites W3088511490 @default.
- W3092103025 cites W3101366597 @default.
- W3092103025 cites W3102540985 @default.
- W3092103025 cites W3103006639 @default.
- W3092103025 cites W3103801215 @default.
- W3092103025 cites W3106000504 @default.
- W3092103025 cites W3106445281 @default.
- W3092103025 cites W3114569718 @default.
- W3092103025 cites W3115087172 @default.
- W3092103025 cites W3115418111 @default.
- W3092103025 cites W3116873649 @default.
- W3092103025 cites W3124675547 @default.
- W3092103025 cites W3127259869 @default.
- W3092103025 cites W3153182568 @default.
- W3092103025 cites W3153432523 @default.
- W3092103025 cites W3155333579 @default.
- W3092103025 cites W3155345376 @default.
- W3092103025 cites W3155690528 @default.
- W3092103025 cites W3155763527 @default.
- W3092103025 cites W3156200279 @default.
- W3092103025 cites W3156622960 @default.
- W3092103025 cites W3156939347 @default.
- W3092103025 cites W3160125849 @default.
- W3092103025 cites W3163155381 @default.
- W3092103025 cites W3164238513 @default.
- W3092103025 cites W3170713142 @default.
- W3092103025 cites W3177319669 @default.
- W3092103025 cites W3199814031 @default.
- W3092103025 cites W3200511717 @default.
- W3092103025 cites W3200608657 @default.
- W3092103025 cites W3210547226 @default.
- W3092103025 cites W4213113302 @default.
- W3092103025 cites W4213348292 @default.
- W3092103025 cites W4288079518 @default.
- W3092103025 doi "https://doi.org/10.1145/3564284" @default.
- W3092103025 hasPublicationYear "2023" @default.
- W3092103025 type Work @default.
- W3092103025 sameAs 3092103025 @default.
- W3092103025 citedByCount "59" @default.
- W3092103025 countsByYear W30921030252020 @default.
- W3092103025 countsByYear W30921030252021 @default.
- W3092103025 countsByYear W30921030252022 @default.
- W3092103025 countsByYear W30921030252023 @default.
- W3092103025 crossrefType "journal-article" @default.