Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092106208> ?p ?o ?g. }
- W3092106208 endingPage "8" @default.
- W3092106208 startingPage "1" @default.
- W3092106208 abstract "We aimed to evaluate deep learning approach with convolutional neural networks (CNNs) to discriminate between benign and malignant lesions on maximum intensity projections of dynamic contrast-enhanced breast magnetic resonance imaging (MRI). We retrospectively gathered maximum intensity projections of dynamic contrast-enhanced breast MRI of 106 benign (including 22 normal) and 180 malignant cases for training and validation data. CNN models were constructed to calculate the probability of malignancy using CNN architectures (DenseNet121, DenseNet169, InceptionResNetV2, InceptionV3, NasNetMobile, and Xception) with 500 epochs and analyzed that of 25 benign (including 12 normal) and 47 malignant cases for test data. Two human readers also interpreted these test data and scored the probability of malignancy for each case using Breast Imaging Reporting and Data System. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC) were calculated. The CNN models showed a mean AUC of 0.830 (range, 0.750–0.895). The best model was InceptionResNetV2. This model, Reader 1, and Reader 2 had sensitivities of 74.5%, 72.3%, and 78.7%; specificities of 96.0%, 88.0%, and 80.0%; and AUCs of 0.895, 0.823, and 0.849, respectively. No significant difference arose between the CNN models and human readers (p > 0.125). Our CNN models showed comparable diagnostic performance in differentiating between benign and malignant lesions to human readers on maximum intensity projection of dynamic contrast-enhanced breast MRI." @default.
- W3092106208 created "2020-10-15" @default.
- W3092106208 creator A5020380786 @default.
- W3092106208 creator A5034642477 @default.
- W3092106208 creator A5044255955 @default.
- W3092106208 creator A5044628775 @default.
- W3092106208 creator A5047937328 @default.
- W3092106208 creator A5049447343 @default.
- W3092106208 creator A5050951311 @default.
- W3092106208 creator A5067070501 @default.
- W3092106208 creator A5072196799 @default.
- W3092106208 creator A5077687293 @default.
- W3092106208 creator A5082112397 @default.
- W3092106208 creator A5082167694 @default.
- W3092106208 date "2021-01-01" @default.
- W3092106208 modified "2023-10-04" @default.
- W3092106208 title "Deep-learning approach with convolutional neural network for classification of maximum intensity projections of dynamic contrast-enhanced breast magnetic resonance imaging" @default.
- W3092106208 cites W1980527762 @default.
- W3092106208 cites W2007786627 @default.
- W3092106208 cites W2013703224 @default.
- W3092106208 cites W2013833894 @default.
- W3092106208 cites W2049357400 @default.
- W3092106208 cites W2121960517 @default.
- W3092106208 cites W2141798739 @default.
- W3092106208 cites W2151744107 @default.
- W3092106208 cites W2496653575 @default.
- W3092106208 cites W2781525129 @default.
- W3092106208 cites W2805105654 @default.
- W3092106208 cites W2890139949 @default.
- W3092106208 cites W2900955936 @default.
- W3092106208 cites W2901024487 @default.
- W3092106208 cites W2922512202 @default.
- W3092106208 cites W2924927402 @default.
- W3092106208 cites W2926848333 @default.
- W3092106208 cites W2939142770 @default.
- W3092106208 cites W2962858109 @default.
- W3092106208 cites W2963716858 @default.
- W3092106208 cites W2989028599 @default.
- W3092106208 cites W3033243763 @default.
- W3092106208 doi "https://doi.org/10.1016/j.mri.2020.10.003" @default.
- W3092106208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33045323" @default.
- W3092106208 hasPublicationYear "2021" @default.
- W3092106208 type Work @default.
- W3092106208 sameAs 3092106208 @default.
- W3092106208 citedByCount "24" @default.
- W3092106208 countsByYear W30921062082020 @default.
- W3092106208 countsByYear W30921062082021 @default.
- W3092106208 countsByYear W30921062082022 @default.
- W3092106208 countsByYear W30921062082023 @default.
- W3092106208 crossrefType "journal-article" @default.
- W3092106208 hasAuthorship W3092106208A5020380786 @default.
- W3092106208 hasAuthorship W3092106208A5034642477 @default.
- W3092106208 hasAuthorship W3092106208A5044255955 @default.
- W3092106208 hasAuthorship W3092106208A5044628775 @default.
- W3092106208 hasAuthorship W3092106208A5047937328 @default.
- W3092106208 hasAuthorship W3092106208A5049447343 @default.
- W3092106208 hasAuthorship W3092106208A5050951311 @default.
- W3092106208 hasAuthorship W3092106208A5067070501 @default.
- W3092106208 hasAuthorship W3092106208A5072196799 @default.
- W3092106208 hasAuthorship W3092106208A5077687293 @default.
- W3092106208 hasAuthorship W3092106208A5082112397 @default.
- W3092106208 hasAuthorship W3092106208A5082167694 @default.
- W3092106208 hasConcept C108583219 @default.
- W3092106208 hasConcept C110021049 @default.
- W3092106208 hasConcept C119857082 @default.
- W3092106208 hasConcept C121332964 @default.
- W3092106208 hasConcept C121608353 @default.
- W3092106208 hasConcept C126322002 @default.
- W3092106208 hasConcept C126838900 @default.
- W3092106208 hasConcept C142724271 @default.
- W3092106208 hasConcept C143409427 @default.
- W3092106208 hasConcept C153180895 @default.
- W3092106208 hasConcept C154945302 @default.
- W3092106208 hasConcept C2776502983 @default.
- W3092106208 hasConcept C2777432617 @default.
- W3092106208 hasConcept C2779399171 @default.
- W3092106208 hasConcept C2780472235 @default.
- W3092106208 hasConcept C2780643987 @default.
- W3092106208 hasConcept C2989005 @default.
- W3092106208 hasConcept C2994142346 @default.
- W3092106208 hasConcept C41008148 @default.
- W3092106208 hasConcept C530470458 @default.
- W3092106208 hasConcept C58471807 @default.
- W3092106208 hasConcept C62520636 @default.
- W3092106208 hasConcept C71924100 @default.
- W3092106208 hasConcept C81363708 @default.
- W3092106208 hasConcept C93038891 @default.
- W3092106208 hasConceptScore W3092106208C108583219 @default.
- W3092106208 hasConceptScore W3092106208C110021049 @default.
- W3092106208 hasConceptScore W3092106208C119857082 @default.
- W3092106208 hasConceptScore W3092106208C121332964 @default.
- W3092106208 hasConceptScore W3092106208C121608353 @default.
- W3092106208 hasConceptScore W3092106208C126322002 @default.
- W3092106208 hasConceptScore W3092106208C126838900 @default.
- W3092106208 hasConceptScore W3092106208C142724271 @default.
- W3092106208 hasConceptScore W3092106208C143409427 @default.
- W3092106208 hasConceptScore W3092106208C153180895 @default.
- W3092106208 hasConceptScore W3092106208C154945302 @default.