Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092118421> ?p ?o ?g. }
- W3092118421 endingPage "691" @default.
- W3092118421 startingPage "674" @default.
- W3092118421 abstract "The use of containers in cloud computing has been steadily increasing. With the emergence of Kubernetes, the management of applications inside containers (or pods) is simplified. Kubernetes allows automated actions like self-healing, scaling, rolling back, and updates for the application management. At the same time, security threats have also evolved with attacks on pods to perform malicious actions. Out of several recent malware types, cryptomining has emerged as one of the most serious threats with its hijacking of server resources for cryptocurrency mining. During application deployment and execution in the pod, a cryptomining process, started by a hidden malware executable can be run in the background, and a method to detect malicious cryptomining software running inside Kubernetes pods is needed. One feasible strategy is to use machine learning (ML) to identify and classify pods based on whether or not they contain a running process of cryptomining. In addition to such detection, the system administrator will need an explanation as to the reason(s) of the ML's classification outcome. The explanation will justify and support disruptive administrative decisions such as pod removal or its restart with a new image. In this article, we describe the design and implementation of an ML-based detection system of anomalous pods in a Kubernetes cluster by monitoring Linux-kernel system calls (syscalls). Several types of cryptominers images are used as containers within an anomalous pod, and several ML models are built to detect such pods in the presence of numerous healthy cloud workloads. Explainability is provided using SHAP, LIME, and a novel auto-encoding-based scheme for LSTM models. Seven evaluation metrics are used to compare and contrast the explainable models of the proposed ML cryptomining detection engine." @default.
- W3092118421 created "2020-10-15" @default.
- W3092118421 creator A5018239054 @default.
- W3092118421 creator A5034331643 @default.
- W3092118421 creator A5048725993 @default.
- W3092118421 creator A5068963284 @default.
- W3092118421 creator A5080747890 @default.
- W3092118421 date "2021-03-01" @default.
- W3092118421 modified "2023-10-17" @default.
- W3092118421 title "Cryptomining Detection in Container Clouds Using System Calls and Explainable Machine Learning" @default.
- W3092118421 cites W2003568760 @default.
- W3092118421 cites W2014802425 @default.
- W3092118421 cites W2037026906 @default.
- W3092118421 cites W2039089492 @default.
- W3092118421 cites W2135198734 @default.
- W3092118421 cites W2137365926 @default.
- W3092118421 cites W2155653793 @default.
- W3092118421 cites W2170770919 @default.
- W3092118421 cites W2184107019 @default.
- W3092118421 cites W2239647876 @default.
- W3092118421 cites W2282821441 @default.
- W3092118421 cites W2291034565 @default.
- W3092118421 cites W2298292381 @default.
- W3092118421 cites W2318851192 @default.
- W3092118421 cites W2327096688 @default.
- W3092118421 cites W2557513839 @default.
- W3092118421 cites W2560647685 @default.
- W3092118421 cites W2564089970 @default.
- W3092118421 cites W2577741565 @default.
- W3092118421 cites W2602516395 @default.
- W3092118421 cites W2725905746 @default.
- W3092118421 cites W2745390745 @default.
- W3092118421 cites W2753669113 @default.
- W3092118421 cites W2763172007 @default.
- W3092118421 cites W2775261393 @default.
- W3092118421 cites W2787649617 @default.
- W3092118421 cites W2805704668 @default.
- W3092118421 cites W2885766119 @default.
- W3092118421 cites W2887682444 @default.
- W3092118421 cites W2889682758 @default.
- W3092118421 cites W2890152369 @default.
- W3092118421 cites W2890978676 @default.
- W3092118421 cites W2964088652 @default.
- W3092118421 cites W2964159373 @default.
- W3092118421 cites W2970700895 @default.
- W3092118421 cites W2973628901 @default.
- W3092118421 cites W2974072037 @default.
- W3092118421 cites W3102476541 @default.
- W3092118421 doi "https://doi.org/10.1109/tpds.2020.3029088" @default.
- W3092118421 hasPublicationYear "2021" @default.
- W3092118421 type Work @default.
- W3092118421 sameAs 3092118421 @default.
- W3092118421 citedByCount "30" @default.
- W3092118421 countsByYear W30921184212021 @default.
- W3092118421 countsByYear W30921184212022 @default.
- W3092118421 countsByYear W30921184212023 @default.
- W3092118421 crossrefType "journal-article" @default.
- W3092118421 hasAuthorship W3092118421A5018239054 @default.
- W3092118421 hasAuthorship W3092118421A5034331643 @default.
- W3092118421 hasAuthorship W3092118421A5048725993 @default.
- W3092118421 hasAuthorship W3092118421A5068963284 @default.
- W3092118421 hasAuthorship W3092118421A5080747890 @default.
- W3092118421 hasBestOaLocation W30921184211 @default.
- W3092118421 hasConcept C10144332 @default.
- W3092118421 hasConcept C105339364 @default.
- W3092118421 hasConcept C111919701 @default.
- W3092118421 hasConcept C114614502 @default.
- W3092118421 hasConcept C119857082 @default.
- W3092118421 hasConcept C127413603 @default.
- W3092118421 hasConcept C154945302 @default.
- W3092118421 hasConcept C160145156 @default.
- W3092118421 hasConcept C2777904410 @default.
- W3092118421 hasConcept C2778579508 @default.
- W3092118421 hasConcept C2781018962 @default.
- W3092118421 hasConcept C33923547 @default.
- W3092118421 hasConcept C38652104 @default.
- W3092118421 hasConcept C41008148 @default.
- W3092118421 hasConcept C541664917 @default.
- W3092118421 hasConcept C74193536 @default.
- W3092118421 hasConcept C78519656 @default.
- W3092118421 hasConcept C79974875 @default.
- W3092118421 hasConcept C98045186 @default.
- W3092118421 hasConceptScore W3092118421C10144332 @default.
- W3092118421 hasConceptScore W3092118421C105339364 @default.
- W3092118421 hasConceptScore W3092118421C111919701 @default.
- W3092118421 hasConceptScore W3092118421C114614502 @default.
- W3092118421 hasConceptScore W3092118421C119857082 @default.
- W3092118421 hasConceptScore W3092118421C127413603 @default.
- W3092118421 hasConceptScore W3092118421C154945302 @default.
- W3092118421 hasConceptScore W3092118421C160145156 @default.
- W3092118421 hasConceptScore W3092118421C2777904410 @default.
- W3092118421 hasConceptScore W3092118421C2778579508 @default.
- W3092118421 hasConceptScore W3092118421C2781018962 @default.
- W3092118421 hasConceptScore W3092118421C33923547 @default.
- W3092118421 hasConceptScore W3092118421C38652104 @default.
- W3092118421 hasConceptScore W3092118421C41008148 @default.
- W3092118421 hasConceptScore W3092118421C541664917 @default.
- W3092118421 hasConceptScore W3092118421C74193536 @default.