Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092127900> ?p ?o ?g. }
- W3092127900 endingPage "104884" @default.
- W3092127900 startingPage "104884" @default.
- W3092127900 abstract "Abstract Megafires are large wildfires that occur under extreme weather conditions and produce mixed burn severities across diverse environmental gradients. Assessing megafire effects requires data covering large spatiotemporal extents, which are difficult to collect from field inventories. Remote sensing provides an alternative but is limited in revealing post-fire recovery trajectories and the underlying processes that drive the recovery. We developed a novel framework to spatially reconstruct the post-fire time-series of forest conditions after the 1987 Black Dragon fire of China by integrating a forest landscape model (LANDIS) with remote sensing and inventory data. We derived pre-fire (1985) forest composition and the megafire perimeter and severity using remote sensing and inventory data. We simulated the megafire and the post-megafire forest recovery from 1985 to 2015 using the LANDIS model. We demonstrated that the framework was effective in reconstructing the post-fire stand dynamics and that it is applicable to other types of disturbances." @default.
- W3092127900 created "2020-10-15" @default.
- W3092127900 creator A5015770241 @default.
- W3092127900 creator A5033483595 @default.
- W3092127900 creator A5042156274 @default.
- W3092127900 creator A5048243537 @default.
- W3092127900 creator A5064746907 @default.
- W3092127900 creator A5084035201 @default.
- W3092127900 creator A5085777358 @default.
- W3092127900 date "2020-12-01" @default.
- W3092127900 modified "2023-10-14" @default.
- W3092127900 title "Spatially explicit reconstruction of post-megafire forest recovery through landscape modeling" @default.
- W3092127900 cites W1913403377 @default.
- W3092127900 cites W1963768209 @default.
- W3092127900 cites W1965006786 @default.
- W3092127900 cites W1966499567 @default.
- W3092127900 cites W1969314351 @default.
- W3092127900 cites W1980058571 @default.
- W3092127900 cites W1980130777 @default.
- W3092127900 cites W1983523689 @default.
- W3092127900 cites W1987538382 @default.
- W3092127900 cites W1991192533 @default.
- W3092127900 cites W1998856716 @default.
- W3092127900 cites W2003229526 @default.
- W3092127900 cites W2004156726 @default.
- W3092127900 cites W2009839710 @default.
- W3092127900 cites W2017799109 @default.
- W3092127900 cites W2028240797 @default.
- W3092127900 cites W2047744778 @default.
- W3092127900 cites W2052109396 @default.
- W3092127900 cites W2053299494 @default.
- W3092127900 cites W2055639236 @default.
- W3092127900 cites W2067337043 @default.
- W3092127900 cites W2075832766 @default.
- W3092127900 cites W2077890001 @default.
- W3092127900 cites W2078550266 @default.
- W3092127900 cites W2080048446 @default.
- W3092127900 cites W2088295137 @default.
- W3092127900 cites W2089955105 @default.
- W3092127900 cites W2093056847 @default.
- W3092127900 cites W2093791223 @default.
- W3092127900 cites W2094027924 @default.
- W3092127900 cites W2097395784 @default.
- W3092127900 cites W2109906104 @default.
- W3092127900 cites W2116032305 @default.
- W3092127900 cites W2117187371 @default.
- W3092127900 cites W2118591097 @default.
- W3092127900 cites W2124669836 @default.
- W3092127900 cites W2127617689 @default.
- W3092127900 cites W2127776154 @default.
- W3092127900 cites W2128214025 @default.
- W3092127900 cites W2131107153 @default.
- W3092127900 cites W2132576438 @default.
- W3092127900 cites W2134814598 @default.
- W3092127900 cites W2136821186 @default.
- W3092127900 cites W2138800506 @default.
- W3092127900 cites W2139186521 @default.
- W3092127900 cites W2144230836 @default.
- W3092127900 cites W2151456308 @default.
- W3092127900 cites W2154108675 @default.
- W3092127900 cites W2155152085 @default.
- W3092127900 cites W2155788786 @default.
- W3092127900 cites W2157946430 @default.
- W3092127900 cites W2161189357 @default.
- W3092127900 cites W2162547421 @default.
- W3092127900 cites W2164348122 @default.
- W3092127900 cites W2166629676 @default.
- W3092127900 cites W2166643342 @default.
- W3092127900 cites W2168338454 @default.
- W3092127900 cites W2168577305 @default.
- W3092127900 cites W2171210136 @default.
- W3092127900 cites W2192441568 @default.
- W3092127900 cites W2299244640 @default.
- W3092127900 cites W2345706146 @default.
- W3092127900 cites W2507380695 @default.
- W3092127900 cites W2508512371 @default.
- W3092127900 cites W2561780627 @default.
- W3092127900 cites W2774098203 @default.
- W3092127900 cites W2789931553 @default.
- W3092127900 cites W2793370749 @default.
- W3092127900 cites W2800385898 @default.
- W3092127900 cites W2889770072 @default.
- W3092127900 cites W2891761971 @default.
- W3092127900 cites W2902537404 @default.
- W3092127900 cites W2908186773 @default.
- W3092127900 cites W2910741837 @default.
- W3092127900 cites W2913811175 @default.
- W3092127900 cites W2926936561 @default.
- W3092127900 cites W3002173515 @default.
- W3092127900 cites W4247272324 @default.
- W3092127900 doi "https://doi.org/10.1016/j.envsoft.2020.104884" @default.
- W3092127900 hasPublicationYear "2020" @default.
- W3092127900 type Work @default.
- W3092127900 sameAs 3092127900 @default.
- W3092127900 citedByCount "6" @default.
- W3092127900 countsByYear W30921279002022 @default.
- W3092127900 crossrefType "journal-article" @default.
- W3092127900 hasAuthorship W3092127900A5015770241 @default.