Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092151103> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3092151103 endingPage "104046" @default.
- W3092151103 startingPage "104046" @default.
- W3092151103 abstract "Deep learning-based object detection solutions emerged from computer vision has captivated full attention in recent years. The growing UAV market trends and interest in potential applications such as surveillance, visual navigation, object detection, and sensors-based obstacle avoidance planning have been holding good promises in the area of deep learning. Object detection algorithms implemented in deep learning framework have rapidly became a method for processing of moving images captured from drones. The primary objective of the paper is to provide a comprehensive review of the state of the art deep learning based object detection algorithms and analyze recent contributions of these algorithms to low altitude UAV datasets. The core focus of the studies is low-altitude UAV datasets because relatively less contribution was seen in the literature when compared with standard or remote-sensing based datasets. The paper discusses the following algorithms: Faster RCNN, Cascade RCNN, R-FCN etc. into two-stage, YOLO and its variants, SSD, RetinaNet into one-stage and CornerNet, Objects as Point etc. under advanced stages in deep learning based detectors. Further, one-two and advanced stages of detectors are studied in detail focusing on low-altitude UAV datasets. The paper provides a broad summary of low altitude datasets along with their respective literature in detection algorithms for the potential use of researchers. Various research gaps and challenges for object detection and classification in UAV datasets that need to deal with for improving the performance are also listed." @default.
- W3092151103 created "2020-10-15" @default.
- W3092151103 creator A5036120568 @default.
- W3092151103 creator A5038643524 @default.
- W3092151103 creator A5048987624 @default.
- W3092151103 date "2020-12-01" @default.
- W3092151103 modified "2023-10-18" @default.
- W3092151103 title "Deep learning-based object detection in low-altitude UAV datasets: A survey" @default.
- W3092151103 cites W1958328135 @default.
- W3092151103 cites W1979770060 @default.
- W3092151103 cites W1998943389 @default.
- W3092151103 cites W2031489346 @default.
- W3092151103 cites W2056862136 @default.
- W3092151103 cites W2088049833 @default.
- W3092151103 cites W2090146153 @default.
- W3092151103 cites W2095537868 @default.
- W3092151103 cites W2097407567 @default.
- W3092151103 cites W2100376879 @default.
- W3092151103 cites W2117539524 @default.
- W3092151103 cites W2176924101 @default.
- W3092151103 cites W2268622754 @default.
- W3092151103 cites W2308318555 @default.
- W3092151103 cites W2469368482 @default.
- W3092151103 cites W2510352715 @default.
- W3092151103 cites W2530415363 @default.
- W3092151103 cites W2555441839 @default.
- W3092151103 cites W2582222835 @default.
- W3092151103 cites W2587248218 @default.
- W3092151103 cites W2645070780 @default.
- W3092151103 cites W2782475589 @default.
- W3092151103 cites W2791347938 @default.
- W3092151103 cites W2791697444 @default.
- W3092151103 cites W2801303340 @default.
- W3092151103 cites W2806252395 @default.
- W3092151103 cites W2884367402 @default.
- W3092151103 cites W2885347446 @default.
- W3092151103 cites W2966102073 @default.
- W3092151103 cites W2988916019 @default.
- W3092151103 doi "https://doi.org/10.1016/j.imavis.2020.104046" @default.
- W3092151103 hasPublicationYear "2020" @default.
- W3092151103 type Work @default.
- W3092151103 sameAs 3092151103 @default.
- W3092151103 citedByCount "102" @default.
- W3092151103 countsByYear W30921511032021 @default.
- W3092151103 countsByYear W30921511032022 @default.
- W3092151103 countsByYear W30921511032023 @default.
- W3092151103 crossrefType "journal-article" @default.
- W3092151103 hasAuthorship W3092151103A5036120568 @default.
- W3092151103 hasAuthorship W3092151103A5038643524 @default.
- W3092151103 hasAuthorship W3092151103A5048987624 @default.
- W3092151103 hasConcept C108583219 @default.
- W3092151103 hasConcept C153180895 @default.
- W3092151103 hasConcept C154945302 @default.
- W3092151103 hasConcept C2524010 @default.
- W3092151103 hasConcept C2776151529 @default.
- W3092151103 hasConcept C2781238097 @default.
- W3092151103 hasConcept C2993172488 @default.
- W3092151103 hasConcept C31972630 @default.
- W3092151103 hasConcept C33923547 @default.
- W3092151103 hasConcept C41008148 @default.
- W3092151103 hasConcept C6350597 @default.
- W3092151103 hasConceptScore W3092151103C108583219 @default.
- W3092151103 hasConceptScore W3092151103C153180895 @default.
- W3092151103 hasConceptScore W3092151103C154945302 @default.
- W3092151103 hasConceptScore W3092151103C2524010 @default.
- W3092151103 hasConceptScore W3092151103C2776151529 @default.
- W3092151103 hasConceptScore W3092151103C2781238097 @default.
- W3092151103 hasConceptScore W3092151103C2993172488 @default.
- W3092151103 hasConceptScore W3092151103C31972630 @default.
- W3092151103 hasConceptScore W3092151103C33923547 @default.
- W3092151103 hasConceptScore W3092151103C41008148 @default.
- W3092151103 hasConceptScore W3092151103C6350597 @default.
- W3092151103 hasLocation W30921511031 @default.
- W3092151103 hasOpenAccess W3092151103 @default.
- W3092151103 hasPrimaryLocation W30921511031 @default.
- W3092151103 hasRelatedWork W1971759388 @default.
- W3092151103 hasRelatedWork W2004370856 @default.
- W3092151103 hasRelatedWork W2007544051 @default.
- W3092151103 hasRelatedWork W2025800131 @default.
- W3092151103 hasRelatedWork W2035456249 @default.
- W3092151103 hasRelatedWork W2095705906 @default.
- W3092151103 hasRelatedWork W2129974284 @default.
- W3092151103 hasRelatedWork W2922421953 @default.
- W3092151103 hasRelatedWork W2970686063 @default.
- W3092151103 hasRelatedWork W2975200075 @default.
- W3092151103 hasVolume "104" @default.
- W3092151103 isParatext "false" @default.
- W3092151103 isRetracted "false" @default.
- W3092151103 magId "3092151103" @default.
- W3092151103 workType "article" @default.