Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092161847> ?p ?o ?g. }
- W3092161847 endingPage "181" @default.
- W3092161847 startingPage "148" @default.
- W3092161847 abstract "Artificial intelligence and deep learning algorithms are infiltrating various fields of medicine and dentistry. The purpose of the current study was to review literatures applying deep learning algorithms to the dentistry and implantology. Electronic literature search through MEDLINE and IEEE Xplore library database was performed at 2019 October by combining free-text terms and entry terms associated with ‘dentistry’ and ‘deep learning’. The searched literature was screened by title/abstract level and full text level. Following data were extracted from the included studies: information of author, publication year, the aim of the study, architecture of deep learning, input data, output data, and performance of the deep learning algorithm in the study. 340 studies were retrieved from the databases and 62 studies were included in the study. Deep learning algorithms were applied to tooth localization and numbering, detection of dental caries/periodontal disease/ periapical disease/oral cancerous lesion, localization of cephalometric landmarks, image quality enhancement, prediction and compensation of deformation error in additive manufacturing of prosthesis. Convolutional neural network was used for periapical radiograph, panoramic radiograph, or computed tomography in most of included studies. Deep learning algorithms are expected to help clinicians diagnose and make decisions by extracting dental data, detecting diseases and abnormal lesions, and improving image quality." @default.
- W3092161847 created "2020-10-15" @default.
- W3092161847 creator A5023074160 @default.
- W3092161847 creator A5067084490 @default.
- W3092161847 creator A5085051504 @default.
- W3092161847 date "2020-09-01" @default.
- W3092161847 modified "2023-09-27" @default.
- W3092161847 title "Application of Deep Learning in Dentistry and Implantology" @default.
- W3092161847 cites W1498436455 @default.
- W3092161847 cites W1677182931 @default.
- W3092161847 cites W1901129140 @default.
- W3092161847 cites W2003287898 @default.
- W3092161847 cites W2040592810 @default.
- W3092161847 cites W2040870580 @default.
- W3092161847 cites W2064675550 @default.
- W3092161847 cites W2101926813 @default.
- W3092161847 cites W2103212315 @default.
- W3092161847 cites W2112796928 @default.
- W3092161847 cites W2136922672 @default.
- W3092161847 cites W2157331557 @default.
- W3092161847 cites W2555989946 @default.
- W3092161847 cites W2574147169 @default.
- W3092161847 cites W2592888171 @default.
- W3092161847 cites W2725194261 @default.
- W3092161847 cites W2738406145 @default.
- W3092161847 cites W2758062365 @default.
- W3092161847 cites W2770088036 @default.
- W3092161847 cites W2782412726 @default.
- W3092161847 cites W2783665259 @default.
- W3092161847 cites W2783795229 @default.
- W3092161847 cites W2799369264 @default.
- W3092161847 cites W2803044806 @default.
- W3092161847 cites W2804967795 @default.
- W3092161847 cites W2809324239 @default.
- W3092161847 cites W2811017491 @default.
- W3092161847 cites W2883089513 @default.
- W3092161847 cites W2883741661 @default.
- W3092161847 cites W2885279911 @default.
- W3092161847 cites W2891748471 @default.
- W3092161847 cites W2896145365 @default.
- W3092161847 cites W2898849308 @default.
- W3092161847 cites W2899380081 @default.
- W3092161847 cites W2899443335 @default.
- W3092161847 cites W2902690370 @default.
- W3092161847 cites W2905116258 @default.
- W3092161847 cites W2907632336 @default.
- W3092161847 cites W2910913949 @default.
- W3092161847 cites W2914498953 @default.
- W3092161847 cites W2918471352 @default.
- W3092161847 cites W2919086999 @default.
- W3092161847 cites W2920026315 @default.
- W3092161847 cites W2920073091 @default.
- W3092161847 cites W2921560990 @default.
- W3092161847 cites W2923375309 @default.
- W3092161847 cites W2936133355 @default.
- W3092161847 cites W2943296198 @default.
- W3092161847 cites W2944517541 @default.
- W3092161847 cites W2947000504 @default.
- W3092161847 cites W2951037649 @default.
- W3092161847 cites W2951864735 @default.
- W3092161847 cites W2951985572 @default.
- W3092161847 cites W2953138420 @default.
- W3092161847 cites W2958187724 @default.
- W3092161847 cites W2962611724 @default.
- W3092161847 cites W2962784219 @default.
- W3092161847 cites W2962879957 @default.
- W3092161847 cites W2963556008 @default.
- W3092161847 cites W2964967951 @default.
- W3092161847 cites W2966651513 @default.
- W3092161847 cites W2970357141 @default.
- W3092161847 cites W2971102452 @default.
- W3092161847 cites W2972072626 @default.
- W3092161847 cites W2972261808 @default.
- W3092161847 cites W2973800346 @default.
- W3092161847 cites W2974113764 @default.
- W3092161847 cites W2979436696 @default.
- W3092161847 cites W2980045479 @default.
- W3092161847 cites W2980254319 @default.
- W3092161847 cites W2981223691 @default.
- W3092161847 cites W3102467893 @default.
- W3092161847 cites W4253667136 @default.
- W3092161847 cites W4255885670 @default.
- W3092161847 cites W639708223 @default.
- W3092161847 doi "https://doi.org/10.32542/implantology.202015" @default.
- W3092161847 hasPublicationYear "2020" @default.
- W3092161847 type Work @default.
- W3092161847 sameAs 3092161847 @default.
- W3092161847 citedByCount "4" @default.
- W3092161847 countsByYear W30921618472022 @default.
- W3092161847 countsByYear W30921618472023 @default.
- W3092161847 crossrefType "journal-article" @default.
- W3092161847 hasAuthorship W3092161847A5023074160 @default.
- W3092161847 hasAuthorship W3092161847A5067084490 @default.
- W3092161847 hasAuthorship W3092161847A5085051504 @default.
- W3092161847 hasBestOaLocation W30921618471 @default.
- W3092161847 hasConcept C108583219 @default.
- W3092161847 hasConcept C11413529 @default.
- W3092161847 hasConcept C119857082 @default.