Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092201318> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3092201318 endingPage "181929" @default.
- W3092201318 startingPage "181916" @default.
- W3092201318 abstract "Cloud computing has very attractive features like elastic, on demand and fully managed computer system resources and services. However, due to its distributed and dynamic nature as well as vulnerabilities in virtualization implementation, the cloud environment is prone to various cyber-attacks and security issues related to cloud model. Some of them are inability to access data coming to and from cloud service, theft and misuse of data hosted, no control over sensitive data access, advance threats like malware injection attack, wrapping attacks, virtual machine escape, distributed denial of service attack (DDoS) etc. DDoS is one of the notorious attack. Despite a number of available potential solutions for the detection of DDoS attacks, the increasing frequency and potency of recent attacks and the constantly evolving attack vectors, necessitate the development of improved detection approaches. This article proposes a novel architecture that combines a well posed stacked sparse AutoEncoder (AE) for feature learning with a Deep Neural Network (DNN) for classification of network traffic into benign traffic and DDoS attack traffic. AE and DNN are optimized for detection of DDoS attacks by tuning the parameters using appropriately designed techniques. The improvements suggested in this article lead to low reconstruction error, prevent exploding and vanishing gradients, and lead to smaller network which avoids overfitting. A comparative analysis of the proposed approach with ten state-of-the-art approaches using performance metrics-detection accuracy, precision, recall and F1-Score, has been conducted. Experiments have been performed on CICIDS2017 and NSL-KDD standard datasets for validation. Proposed approach outperforms existing approaches over the NSL-KDD dataset and yields competitive results over the CICIDS2017 dataset." @default.
- W3092201318 created "2020-10-15" @default.
- W3092201318 creator A5025869760 @default.
- W3092201318 creator A5043404487 @default.
- W3092201318 creator A5062208175 @default.
- W3092201318 date "2020-01-01" @default.
- W3092201318 modified "2023-10-03" @default.
- W3092201318 title "Hyperband Tuned Deep Neural Network With Well Posed Stacked Sparse AutoEncoder for Detection of DDoS Attacks in Cloud" @default.
- W3092201318 cites W1999427165 @default.
- W3092201318 cites W2028070713 @default.
- W3092201318 cites W2296509296 @default.
- W3092201318 cites W2399941526 @default.
- W3092201318 cites W2565516711 @default.
- W3092201318 cites W2566381278 @default.
- W3092201318 cites W2734718015 @default.
- W3092201318 cites W2742615699 @default.
- W3092201318 cites W2754884048 @default.
- W3092201318 cites W2762776925 @default.
- W3092201318 cites W2765293204 @default.
- W3092201318 cites W2783741806 @default.
- W3092201318 cites W2786099517 @default.
- W3092201318 cites W2787166691 @default.
- W3092201318 cites W2791756253 @default.
- W3092201318 cites W2803217416 @default.
- W3092201318 cites W2890474333 @default.
- W3092201318 cites W2892142441 @default.
- W3092201318 cites W2896632748 @default.
- W3092201318 cites W2908453820 @default.
- W3092201318 cites W2910074034 @default.
- W3092201318 cites W2945748508 @default.
- W3092201318 cites W2946152575 @default.
- W3092201318 cites W2950916798 @default.
- W3092201318 cites W2952314417 @default.
- W3092201318 cites W2955739827 @default.
- W3092201318 cites W2969295985 @default.
- W3092201318 cites W2979998718 @default.
- W3092201318 cites W2981025625 @default.
- W3092201318 cites W2989255594 @default.
- W3092201318 cites W2994866269 @default.
- W3092201318 cites W3008195198 @default.
- W3092201318 cites W3010471324 @default.
- W3092201318 cites W3035311645 @default.
- W3092201318 cites W3038154406 @default.
- W3092201318 doi "https://doi.org/10.1109/access.2020.3028690" @default.
- W3092201318 hasPublicationYear "2020" @default.
- W3092201318 type Work @default.
- W3092201318 sameAs 3092201318 @default.
- W3092201318 citedByCount "44" @default.
- W3092201318 countsByYear W30922013182021 @default.
- W3092201318 countsByYear W30922013182022 @default.
- W3092201318 countsByYear W30922013182023 @default.
- W3092201318 crossrefType "journal-article" @default.
- W3092201318 hasAuthorship W3092201318A5025869760 @default.
- W3092201318 hasAuthorship W3092201318A5043404487 @default.
- W3092201318 hasAuthorship W3092201318A5062208175 @default.
- W3092201318 hasBestOaLocation W30922013181 @default.
- W3092201318 hasConcept C101738243 @default.
- W3092201318 hasConcept C110875604 @default.
- W3092201318 hasConcept C111919701 @default.
- W3092201318 hasConcept C136764020 @default.
- W3092201318 hasConcept C153180895 @default.
- W3092201318 hasConcept C154945302 @default.
- W3092201318 hasConcept C38652104 @default.
- W3092201318 hasConcept C38822068 @default.
- W3092201318 hasConcept C41008148 @default.
- W3092201318 hasConcept C50644808 @default.
- W3092201318 hasConcept C79974875 @default.
- W3092201318 hasConceptScore W3092201318C101738243 @default.
- W3092201318 hasConceptScore W3092201318C110875604 @default.
- W3092201318 hasConceptScore W3092201318C111919701 @default.
- W3092201318 hasConceptScore W3092201318C136764020 @default.
- W3092201318 hasConceptScore W3092201318C153180895 @default.
- W3092201318 hasConceptScore W3092201318C154945302 @default.
- W3092201318 hasConceptScore W3092201318C38652104 @default.
- W3092201318 hasConceptScore W3092201318C38822068 @default.
- W3092201318 hasConceptScore W3092201318C41008148 @default.
- W3092201318 hasConceptScore W3092201318C50644808 @default.
- W3092201318 hasConceptScore W3092201318C79974875 @default.
- W3092201318 hasFunder F4320322724 @default.
- W3092201318 hasLocation W30922013181 @default.
- W3092201318 hasOpenAccess W3092201318 @default.
- W3092201318 hasPrimaryLocation W30922013181 @default.
- W3092201318 hasRelatedWork W2606119541 @default.
- W3092201318 hasRelatedWork W2611851095 @default.
- W3092201318 hasRelatedWork W2998168123 @default.
- W3092201318 hasRelatedWork W3171028834 @default.
- W3092201318 hasRelatedWork W4223583754 @default.
- W3092201318 hasRelatedWork W4229518441 @default.
- W3092201318 hasRelatedWork W4233956083 @default.
- W3092201318 hasRelatedWork W4287995534 @default.
- W3092201318 hasRelatedWork W4293772239 @default.
- W3092201318 hasRelatedWork W4313017920 @default.
- W3092201318 hasVolume "8" @default.
- W3092201318 isParatext "false" @default.
- W3092201318 isRetracted "false" @default.
- W3092201318 magId "3092201318" @default.
- W3092201318 workType "article" @default.