Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092242024> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3092242024 endingPage "360" @default.
- W3092242024 startingPage "335" @default.
- W3092242024 abstract "Probability distributions over rankings are crucial for the modeling and design of a wide range of practical systems. In this work, we pursue a nonparametric approach that seeks to learn a distribution over rankings (aka the ranking model) that is consistent with the observed data and has the sparsest possible support (i.e., the smallest number of rankings with nonzero probability mass). We focus on first-order marginal data, which comprise information on the probability that item i is ranked at position j, for all possible item and position pairs. The observed data may be noisy. Finding the sparsest approximation requires brute force search in the worst case. To address this issue, we restrict our search to, what we dub, the signature family, and show that the sparsest model within the signature family can be found computationally efficiently compared with the brute force approach. We then establish that the signature family provides good approximations to popular ranking model classes, such as the multinomial logit and the exponential family classes, with support size that is small relative to the dimension of the observed data. We test our methods on two data sets: the ranked election data set from the American Psychological Association and the preference ordering data on 10 different sushi varieties." @default.
- W3092242024 created "2020-10-15" @default.
- W3092242024 creator A5029499294 @default.
- W3092242024 creator A5037762932 @default.
- W3092242024 creator A5053861695 @default.
- W3092242024 date "2020-12-01" @default.
- W3092242024 modified "2023-10-10" @default.
- W3092242024 title "Inferring Sparse Preference Lists from Partial Information" @default.
- W3092242024 cites W1596709027 @default.
- W3092242024 cites W1620362451 @default.
- W3092242024 cites W1963954236 @default.
- W3092242024 cites W1974466705 @default.
- W3092242024 cites W1980457222 @default.
- W3092242024 cites W1991013810 @default.
- W3092242024 cites W2026411617 @default.
- W3092242024 cites W2034763468 @default.
- W3092242024 cites W2077810459 @default.
- W3092242024 cites W2083833236 @default.
- W3092242024 cites W2084368593 @default.
- W3092242024 cites W2098763115 @default.
- W3092242024 cites W2107322825 @default.
- W3092242024 cites W2116148865 @default.
- W3092242024 cites W2119135250 @default.
- W3092242024 cites W2129131372 @default.
- W3092242024 cites W2134120396 @default.
- W3092242024 cites W2134422938 @default.
- W3092242024 cites W2134445663 @default.
- W3092242024 cites W2137344397 @default.
- W3092242024 cites W2137699000 @default.
- W3092242024 cites W2141733469 @default.
- W3092242024 cites W2145096794 @default.
- W3092242024 cites W2147656689 @default.
- W3092242024 cites W2148174192 @default.
- W3092242024 cites W2148575324 @default.
- W3092242024 cites W2150865801 @default.
- W3092242024 cites W2158777411 @default.
- W3092242024 cites W2160396672 @default.
- W3092242024 cites W2164452299 @default.
- W3092242024 cites W2293231900 @default.
- W3092242024 cites W2315863707 @default.
- W3092242024 cites W2493312408 @default.
- W3092242024 cites W2973707709 @default.
- W3092242024 cites W4250955649 @default.
- W3092242024 cites W4252713891 @default.
- W3092242024 cites W4377202790 @default.
- W3092242024 doi "https://doi.org/10.1287/stsy.2019.0060" @default.
- W3092242024 hasPublicationYear "2020" @default.
- W3092242024 type Work @default.
- W3092242024 sameAs 3092242024 @default.
- W3092242024 citedByCount "1" @default.
- W3092242024 countsByYear W30922420242023 @default.
- W3092242024 crossrefType "journal-article" @default.
- W3092242024 hasAuthorship W3092242024A5029499294 @default.
- W3092242024 hasAuthorship W3092242024A5037762932 @default.
- W3092242024 hasAuthorship W3092242024A5053861695 @default.
- W3092242024 hasBestOaLocation W30922420241 @default.
- W3092242024 hasConcept C102366305 @default.
- W3092242024 hasConcept C105795698 @default.
- W3092242024 hasConcept C114614502 @default.
- W3092242024 hasConcept C117568660 @default.
- W3092242024 hasConcept C119857082 @default.
- W3092242024 hasConcept C189430467 @default.
- W3092242024 hasConcept C33676613 @default.
- W3092242024 hasConcept C33923547 @default.
- W3092242024 hasConcept C41008148 @default.
- W3092242024 hasConcept C55974624 @default.
- W3092242024 hasConceptScore W3092242024C102366305 @default.
- W3092242024 hasConceptScore W3092242024C105795698 @default.
- W3092242024 hasConceptScore W3092242024C114614502 @default.
- W3092242024 hasConceptScore W3092242024C117568660 @default.
- W3092242024 hasConceptScore W3092242024C119857082 @default.
- W3092242024 hasConceptScore W3092242024C189430467 @default.
- W3092242024 hasConceptScore W3092242024C33676613 @default.
- W3092242024 hasConceptScore W3092242024C33923547 @default.
- W3092242024 hasConceptScore W3092242024C41008148 @default.
- W3092242024 hasConceptScore W3092242024C55974624 @default.
- W3092242024 hasIssue "4" @default.
- W3092242024 hasLocation W30922420241 @default.
- W3092242024 hasLocation W30922420242 @default.
- W3092242024 hasOpenAccess W3092242024 @default.
- W3092242024 hasPrimaryLocation W30922420241 @default.
- W3092242024 hasRelatedWork W1506113033 @default.
- W3092242024 hasRelatedWork W1837630526 @default.
- W3092242024 hasRelatedWork W2335589441 @default.
- W3092242024 hasRelatedWork W2369306031 @default.
- W3092242024 hasRelatedWork W2494119046 @default.
- W3092242024 hasRelatedWork W2529605301 @default.
- W3092242024 hasRelatedWork W4231665652 @default.
- W3092242024 hasRelatedWork W4237896776 @default.
- W3092242024 hasRelatedWork W4243114048 @default.
- W3092242024 hasRelatedWork W4296826658 @default.
- W3092242024 hasVolume "10" @default.
- W3092242024 isParatext "false" @default.
- W3092242024 isRetracted "false" @default.
- W3092242024 magId "3092242024" @default.
- W3092242024 workType "article" @default.