Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092248730> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3092248730 abstract "Complex nature of medical images and tedious process of data exploration calls for the development of Computer Aided Detection (CADe) methods to ease the process of lesion detection. Recent deep learning-based object detectors from computer vision are adapted to the creation of CADe lesion detectors. This research starts with state-of-the-art object detectors, namely Faster R-CNN, YOLO v2 and Grad-CAM, to determine the location of lesions in Magnetic Resonance Images of breast. A series of experiments are conducted to find the best set up for maximizing the Average Precision (AP) of each method. Consequently, AP values of 0.6993 and 0.7651 are obtained for Faster R-CNN and YOLO v2 respectively. Taking into consideration the pros and cons of each method, we propose different integration architectures in order to overcome the shortcomings of each algorithm, hence enhancing the overall lesion detection performance. The integrated architectures succeed to obtain an AP value up to 0.8097 while providing explainable reasoning that is essential for medical CADe." @default.
- W3092248730 created "2020-10-15" @default.
- W3092248730 creator A5017668310 @default.
- W3092248730 creator A5024152775 @default.
- W3092248730 creator A5029587382 @default.
- W3092248730 creator A5053921484 @default.
- W3092248730 creator A5077033574 @default.
- W3092248730 creator A5079766012 @default.
- W3092248730 date "2020-01-01" @default.
- W3092248730 modified "2023-09-25" @default.
- W3092248730 title "An Integrated Deep Architecture for Lesion Detection in Breast MRI" @default.
- W3092248730 cites W2088049833 @default.
- W3092248730 cites W2102605133 @default.
- W3092248730 cites W2194775991 @default.
- W3092248730 cites W2267700533 @default.
- W3092248730 cites W2560617851 @default.
- W3092248730 cites W2570343428 @default.
- W3092248730 cites W2592950347 @default.
- W3092248730 cites W2740028789 @default.
- W3092248730 cites W2793956967 @default.
- W3092248730 cites W2804608955 @default.
- W3092248730 cites W2898373323 @default.
- W3092248730 cites W2909240409 @default.
- W3092248730 cites W2911426462 @default.
- W3092248730 cites W2914675314 @default.
- W3092248730 cites W2924927402 @default.
- W3092248730 cites W2946074429 @default.
- W3092248730 cites W2957559077 @default.
- W3092248730 cites W2963037989 @default.
- W3092248730 cites W2963150697 @default.
- W3092248730 cites W2970546341 @default.
- W3092248730 cites W2990910383 @default.
- W3092248730 cites W3102564565 @default.
- W3092248730 cites W639708223 @default.
- W3092248730 doi "https://doi.org/10.1007/978-3-030-59830-3_56" @default.
- W3092248730 hasPublicationYear "2020" @default.
- W3092248730 type Work @default.
- W3092248730 sameAs 3092248730 @default.
- W3092248730 citedByCount "0" @default.
- W3092248730 crossrefType "book-chapter" @default.
- W3092248730 hasAuthorship W3092248730A5017668310 @default.
- W3092248730 hasAuthorship W3092248730A5024152775 @default.
- W3092248730 hasAuthorship W3092248730A5029587382 @default.
- W3092248730 hasAuthorship W3092248730A5053921484 @default.
- W3092248730 hasAuthorship W3092248730A5077033574 @default.
- W3092248730 hasAuthorship W3092248730A5079766012 @default.
- W3092248730 hasConcept C108583219 @default.
- W3092248730 hasConcept C111919701 @default.
- W3092248730 hasConcept C123657996 @default.
- W3092248730 hasConcept C142362112 @default.
- W3092248730 hasConcept C153180895 @default.
- W3092248730 hasConcept C153349607 @default.
- W3092248730 hasConcept C154945302 @default.
- W3092248730 hasConcept C177264268 @default.
- W3092248730 hasConcept C199360897 @default.
- W3092248730 hasConcept C2776151529 @default.
- W3092248730 hasConcept C2781238097 @default.
- W3092248730 hasConcept C31972630 @default.
- W3092248730 hasConcept C41008148 @default.
- W3092248730 hasConcept C76155785 @default.
- W3092248730 hasConcept C94915269 @default.
- W3092248730 hasConcept C98045186 @default.
- W3092248730 hasConceptScore W3092248730C108583219 @default.
- W3092248730 hasConceptScore W3092248730C111919701 @default.
- W3092248730 hasConceptScore W3092248730C123657996 @default.
- W3092248730 hasConceptScore W3092248730C142362112 @default.
- W3092248730 hasConceptScore W3092248730C153180895 @default.
- W3092248730 hasConceptScore W3092248730C153349607 @default.
- W3092248730 hasConceptScore W3092248730C154945302 @default.
- W3092248730 hasConceptScore W3092248730C177264268 @default.
- W3092248730 hasConceptScore W3092248730C199360897 @default.
- W3092248730 hasConceptScore W3092248730C2776151529 @default.
- W3092248730 hasConceptScore W3092248730C2781238097 @default.
- W3092248730 hasConceptScore W3092248730C31972630 @default.
- W3092248730 hasConceptScore W3092248730C41008148 @default.
- W3092248730 hasConceptScore W3092248730C76155785 @default.
- W3092248730 hasConceptScore W3092248730C94915269 @default.
- W3092248730 hasConceptScore W3092248730C98045186 @default.
- W3092248730 hasLocation W30922487301 @default.
- W3092248730 hasOpenAccess W3092248730 @default.
- W3092248730 hasPrimaryLocation W30922487301 @default.
- W3092248730 hasRelatedWork W11023932 @default.
- W3092248730 hasRelatedWork W11538522 @default.
- W3092248730 hasRelatedWork W12611155 @default.
- W3092248730 hasRelatedWork W1284803 @default.
- W3092248730 hasRelatedWork W13058890 @default.
- W3092248730 hasRelatedWork W21705 @default.
- W3092248730 hasRelatedWork W4486015 @default.
- W3092248730 hasRelatedWork W8031603 @default.
- W3092248730 hasRelatedWork W9122165 @default.
- W3092248730 hasRelatedWork W8853611 @default.
- W3092248730 isParatext "false" @default.
- W3092248730 isRetracted "false" @default.
- W3092248730 magId "3092248730" @default.
- W3092248730 workType "book-chapter" @default.