Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092321396> ?p ?o ?g. }
- W3092321396 endingPage "4690" @default.
- W3092321396 startingPage "4680" @default.
- W3092321396 abstract "Probabilistic power flow (PPF) calculation is an important power system analysis tool considering the increasing uncertainties. However, existing calculation methods cannot simultaneously achieve high precision and fast calculation, which limits the practical application of the PPF. This article designs a specific architecture of the extreme learning machine (ELM) in a model-driven pattern to extract the power flow features and therefore accelerate the calculation of PPF. ELM is selected because of the unique characteristics of fast training and less intervention. The key challenge is that the learning capability of the ELM for extracting complex features is limited compared with deep neural networks. In this article, we use the physical properties of the power flow model to assist the learning process. To reduce the learning complexity of the power flow features, the feature decomposition and nonlinearity reduction method is proposed to extract the features of the power flow model. An enhanced ELM network architecture is designed. An optimization model for the hidden node parameters is established to improve the learning performance. Based on the proposed model-driven ELM architecture, a fast and accurate PPF calculation method is proposed. The simulations on the IEEE 57-bus and Polish 2383-bus systems demonstrate the effectiveness of the proposed method." @default.
- W3092321396 created "2020-10-15" @default.
- W3092321396 creator A5017941662 @default.
- W3092321396 creator A5028924208 @default.
- W3092321396 creator A5057136360 @default.
- W3092321396 creator A5070021733 @default.
- W3092321396 creator A5074257864 @default.
- W3092321396 creator A5075965253 @default.
- W3092321396 creator A5085165889 @default.
- W3092321396 creator A5090391543 @default.
- W3092321396 date "2021-10-01" @default.
- W3092321396 modified "2023-10-01" @default.
- W3092321396 title "Model-Driven Architecture of Extreme Learning Machine to Extract Power Flow Features" @default.
- W3092321396 cites W1964369576 @default.
- W3092321396 cites W2008765185 @default.
- W3092321396 cites W2013668940 @default.
- W3092321396 cites W2025768430 @default.
- W3092321396 cites W2026131661 @default.
- W3092321396 cites W2037250283 @default.
- W3092321396 cites W2064675550 @default.
- W3092321396 cites W2066405087 @default.
- W3092321396 cites W2096987757 @default.
- W3092321396 cites W2100495367 @default.
- W3092321396 cites W2109064712 @default.
- W3092321396 cites W2117741752 @default.
- W3092321396 cites W2134603844 @default.
- W3092321396 cites W2141695047 @default.
- W3092321396 cites W2194775991 @default.
- W3092321396 cites W2301541953 @default.
- W3092321396 cites W2523086471 @default.
- W3092321396 cites W2556699787 @default.
- W3092321396 cites W2560839401 @default.
- W3092321396 cites W2561964848 @default.
- W3092321396 cites W2589154132 @default.
- W3092321396 cites W2745541172 @default.
- W3092321396 cites W2791062765 @default.
- W3092321396 cites W2800070384 @default.
- W3092321396 cites W2889691632 @default.
- W3092321396 cites W2891556519 @default.
- W3092321396 cites W2909003638 @default.
- W3092321396 cites W2910849319 @default.
- W3092321396 cites W2918966360 @default.
- W3092321396 cites W2963928450 @default.
- W3092321396 cites W2966535964 @default.
- W3092321396 cites W2984666782 @default.
- W3092321396 cites W2988091098 @default.
- W3092321396 cites W2998188743 @default.
- W3092321396 cites W3100011500 @default.
- W3092321396 cites W2766737247 @default.
- W3092321396 doi "https://doi.org/10.1109/tnnls.2020.3025905" @default.
- W3092321396 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33035165" @default.
- W3092321396 hasPublicationYear "2021" @default.
- W3092321396 type Work @default.
- W3092321396 sameAs 3092321396 @default.
- W3092321396 citedByCount "4" @default.
- W3092321396 countsByYear W30923213962022 @default.
- W3092321396 countsByYear W30923213962023 @default.
- W3092321396 crossrefType "journal-article" @default.
- W3092321396 hasAuthorship W3092321396A5017941662 @default.
- W3092321396 hasAuthorship W3092321396A5028924208 @default.
- W3092321396 hasAuthorship W3092321396A5057136360 @default.
- W3092321396 hasAuthorship W3092321396A5070021733 @default.
- W3092321396 hasAuthorship W3092321396A5074257864 @default.
- W3092321396 hasAuthorship W3092321396A5075965253 @default.
- W3092321396 hasAuthorship W3092321396A5085165889 @default.
- W3092321396 hasAuthorship W3092321396A5090391543 @default.
- W3092321396 hasConcept C111335779 @default.
- W3092321396 hasConcept C111919701 @default.
- W3092321396 hasConcept C119857082 @default.
- W3092321396 hasConcept C121332964 @default.
- W3092321396 hasConcept C138885662 @default.
- W3092321396 hasConcept C154945302 @default.
- W3092321396 hasConcept C163258240 @default.
- W3092321396 hasConcept C2524010 @default.
- W3092321396 hasConcept C26517878 @default.
- W3092321396 hasConcept C2776401178 @default.
- W3092321396 hasConcept C2780150128 @default.
- W3092321396 hasConcept C33923547 @default.
- W3092321396 hasConcept C38349280 @default.
- W3092321396 hasConcept C38652104 @default.
- W3092321396 hasConcept C41008148 @default.
- W3092321396 hasConcept C41895202 @default.
- W3092321396 hasConcept C49937458 @default.
- W3092321396 hasConcept C50644808 @default.
- W3092321396 hasConcept C62520636 @default.
- W3092321396 hasConcept C89227174 @default.
- W3092321396 hasConcept C98045186 @default.
- W3092321396 hasConceptScore W3092321396C111335779 @default.
- W3092321396 hasConceptScore W3092321396C111919701 @default.
- W3092321396 hasConceptScore W3092321396C119857082 @default.
- W3092321396 hasConceptScore W3092321396C121332964 @default.
- W3092321396 hasConceptScore W3092321396C138885662 @default.
- W3092321396 hasConceptScore W3092321396C154945302 @default.
- W3092321396 hasConceptScore W3092321396C163258240 @default.
- W3092321396 hasConceptScore W3092321396C2524010 @default.
- W3092321396 hasConceptScore W3092321396C26517878 @default.
- W3092321396 hasConceptScore W3092321396C2776401178 @default.
- W3092321396 hasConceptScore W3092321396C2780150128 @default.