Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092332002> ?p ?o ?g. }
- W3092332002 endingPage "3096" @default.
- W3092332002 startingPage "3083" @default.
- W3092332002 abstract "Learning a proper distance for clustering from prior knowledge falls into the realm of semisupervised fuzzy clustering. Although most existing learning methods take prior knowledge (e.g., pairwise constraints) into account, they pay little attention to local knowledge of data, which, however, can be utilized to optimize the distance. In this article, we propose a novel distance learning method, which learns from the Group-level information, for semisupervised fuzzing clustering. We first present a new format of constraint information, called Group-level constraints, by elevating the pairwise constraints (must-links and cannot-links) from point level to Group level. The Groups, generated around data points contained in the pairwise constraints, carry not only the local information of data (the relation between close data points) but also more background information under some given limited prior knowledge. Then, we propose a novel method to learn a distance by using the Group-level constraints, namely, Group-based distance learning, in order to optimize the performance of fuzzy clustering. The distance learning process aims to pull must-link Groups as close as possible while pushing cannot-link Groups as far as possible. We formulate the learning process with the weights of constraints by invoking some linear and nonlinear transformations. The linear Group-based distance learning method is realized by means of semidefinite programming, and the nonlinear learning method is realized by using the neural network, which can explicitly provide nonlinear mappings. Experimental results based on both synthetic and real-world datasets show that the proposed methods yield much better performance compared to other distance learning methods using pairwise constraints." @default.
- W3092332002 created "2020-10-15" @default.
- W3092332002 creator A5003799782 @default.
- W3092332002 creator A5008107941 @default.
- W3092332002 creator A5008185447 @default.
- W3092332002 creator A5020149906 @default.
- W3092332002 creator A5041425394 @default.
- W3092332002 date "2022-05-01" @default.
- W3092332002 modified "2023-10-14" @default.
- W3092332002 title "A <i>Group</i>-Based Distance Learning Method for Semisupervised Fuzzy Clustering" @default.
- W3092332002 cites W1999634786 @default.
- W3092332002 cites W2010228128 @default.
- W3092332002 cites W2015966799 @default.
- W3092332002 cites W2032942379 @default.
- W3092332002 cites W2042353152 @default.
- W3092332002 cites W2059822086 @default.
- W3092332002 cites W2062112832 @default.
- W3092332002 cites W2068042582 @default.
- W3092332002 cites W2071374228 @default.
- W3092332002 cites W2077276425 @default.
- W3092332002 cites W2098029000 @default.
- W3092332002 cites W2112868720 @default.
- W3092332002 cites W2113054345 @default.
- W3092332002 cites W2137736727 @default.
- W3092332002 cites W2149824585 @default.
- W3092332002 cites W2160754664 @default.
- W3092332002 cites W2165487280 @default.
- W3092332002 cites W2169495281 @default.
- W3092332002 cites W2278012135 @default.
- W3092332002 cites W2312687849 @default.
- W3092332002 cites W2479927430 @default.
- W3092332002 cites W2535481428 @default.
- W3092332002 cites W2535986621 @default.
- W3092332002 cites W2555454054 @default.
- W3092332002 cites W2753064086 @default.
- W3092332002 cites W2765904007 @default.
- W3092332002 cites W2766176203 @default.
- W3092332002 cites W2789845700 @default.
- W3092332002 cites W2798919688 @default.
- W3092332002 cites W2897197428 @default.
- W3092332002 cites W2903531356 @default.
- W3092332002 cites W2906481269 @default.
- W3092332002 cites W2909580881 @default.
- W3092332002 cites W2911769712 @default.
- W3092332002 cites W2912688954 @default.
- W3092332002 cites W2944951088 @default.
- W3092332002 cites W2959498949 @default.
- W3092332002 cites W2963073614 @default.
- W3092332002 cites W2969545804 @default.
- W3092332002 cites W2970436478 @default.
- W3092332002 cites W4210880854 @default.
- W3092332002 cites W4235169531 @default.
- W3092332002 cites W2022832071 @default.
- W3092332002 doi "https://doi.org/10.1109/tcyb.2020.3023373" @default.
- W3092332002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33027030" @default.
- W3092332002 hasPublicationYear "2022" @default.
- W3092332002 type Work @default.
- W3092332002 sameAs 3092332002 @default.
- W3092332002 citedByCount "6" @default.
- W3092332002 countsByYear W30923320022021 @default.
- W3092332002 countsByYear W30923320022022 @default.
- W3092332002 countsByYear W30923320022023 @default.
- W3092332002 crossrefType "journal-article" @default.
- W3092332002 hasAuthorship W3092332002A5003799782 @default.
- W3092332002 hasAuthorship W3092332002A5008107941 @default.
- W3092332002 hasAuthorship W3092332002A5008185447 @default.
- W3092332002 hasAuthorship W3092332002A5020149906 @default.
- W3092332002 hasAuthorship W3092332002A5041425394 @default.
- W3092332002 hasBestOaLocation W30923320021 @default.
- W3092332002 hasConcept C119857082 @default.
- W3092332002 hasConcept C124101348 @default.
- W3092332002 hasConcept C154945302 @default.
- W3092332002 hasConcept C17212007 @default.
- W3092332002 hasConcept C184898388 @default.
- W3092332002 hasConcept C2639959 @default.
- W3092332002 hasConcept C27964816 @default.
- W3092332002 hasConcept C33704608 @default.
- W3092332002 hasConcept C33923547 @default.
- W3092332002 hasConcept C41008148 @default.
- W3092332002 hasConcept C50644808 @default.
- W3092332002 hasConcept C58166 @default.
- W3092332002 hasConcept C73555534 @default.
- W3092332002 hasConceptScore W3092332002C119857082 @default.
- W3092332002 hasConceptScore W3092332002C124101348 @default.
- W3092332002 hasConceptScore W3092332002C154945302 @default.
- W3092332002 hasConceptScore W3092332002C17212007 @default.
- W3092332002 hasConceptScore W3092332002C184898388 @default.
- W3092332002 hasConceptScore W3092332002C2639959 @default.
- W3092332002 hasConceptScore W3092332002C27964816 @default.
- W3092332002 hasConceptScore W3092332002C33704608 @default.
- W3092332002 hasConceptScore W3092332002C33923547 @default.
- W3092332002 hasConceptScore W3092332002C41008148 @default.
- W3092332002 hasConceptScore W3092332002C50644808 @default.
- W3092332002 hasConceptScore W3092332002C58166 @default.
- W3092332002 hasConceptScore W3092332002C73555534 @default.
- W3092332002 hasFunder F4320321001 @default.
- W3092332002 hasFunder F4320321108 @default.
- W3092332002 hasFunder F4320327912 @default.