Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092364307> ?p ?o ?g. }
- W3092364307 endingPage "101599" @default.
- W3092364307 startingPage "101599" @default.
- W3092364307 abstract "Abstract We examine stock return autocorrelation at various quantiles of the returns' distribution and use it to forecast stock return volatility. Our empirical results show that the strength of the autoregression varies across the quantiles of the returns' distribution in terms of both magnitude and persistence. Specifically, the autoregression order and magnitude of the coefficients is lower in the left tail in comparison with the right tail. Additionally, we show that the quantile autoregressive (QAR) framework proposed in this study improves out-of-sample volatility forecasting performance compared to the generalised autoregressive conditional heteroscedasticity (GARCH)-type models and other quantile-based models. We also observe greater outperformance in QAR estimates during periods of financial turmoil. Moreover, the QAR method also explains the stylized ‘leverage effect’ associated with asset returns in the presence of volatility asymmetry." @default.
- W3092364307 created "2020-10-15" @default.
- W3092364307 creator A5007492415 @default.
- W3092364307 creator A5052572096 @default.
- W3092364307 creator A5088954352 @default.
- W3092364307 date "2021-01-01" @default.
- W3092364307 modified "2023-09-24" @default.
- W3092364307 title "Stock returns, quantile autocorrelation, and volatility forecasting" @default.
- W3092364307 cites W1534531491 @default.
- W3092364307 cites W1963607300 @default.
- W3092364307 cites W1965635191 @default.
- W3092364307 cites W1979575715 @default.
- W3092364307 cites W1992041523 @default.
- W3092364307 cites W1999814123 @default.
- W3092364307 cites W1999996900 @default.
- W3092364307 cites W2018090882 @default.
- W3092364307 cites W2020023242 @default.
- W3092364307 cites W2061160212 @default.
- W3092364307 cites W2068138154 @default.
- W3092364307 cites W2098347405 @default.
- W3092364307 cites W2129129802 @default.
- W3092364307 cites W2130472313 @default.
- W3092364307 cites W2131375261 @default.
- W3092364307 cites W2133596638 @default.
- W3092364307 cites W2150747312 @default.
- W3092364307 cites W2165429427 @default.
- W3092364307 cites W2186956633 @default.
- W3092364307 cites W2225597428 @default.
- W3092364307 cites W2278302635 @default.
- W3092364307 cites W2481612547 @default.
- W3092364307 cites W2762142247 @default.
- W3092364307 cites W2775632062 @default.
- W3092364307 cites W2804851729 @default.
- W3092364307 cites W2891568907 @default.
- W3092364307 cites W2899226316 @default.
- W3092364307 cites W2912509860 @default.
- W3092364307 cites W2953998365 @default.
- W3092364307 cites W2964540317 @default.
- W3092364307 cites W2971106942 @default.
- W3092364307 cites W2999199478 @default.
- W3092364307 cites W3121160289 @default.
- W3092364307 cites W3122357788 @default.
- W3092364307 cites W3123082184 @default.
- W3092364307 cites W3123118666 @default.
- W3092364307 cites W3123148124 @default.
- W3092364307 cites W3123998826 @default.
- W3092364307 cites W3124342336 @default.
- W3092364307 cites W3126072850 @default.
- W3092364307 cites W4231546411 @default.
- W3092364307 cites W4239754684 @default.
- W3092364307 cites W4241630354 @default.
- W3092364307 cites W4241653265 @default.
- W3092364307 doi "https://doi.org/10.1016/j.irfa.2020.101599" @default.
- W3092364307 hasPublicationYear "2021" @default.
- W3092364307 type Work @default.
- W3092364307 sameAs 3092364307 @default.
- W3092364307 citedByCount "3" @default.
- W3092364307 countsByYear W30923643072021 @default.
- W3092364307 countsByYear W30923643072022 @default.
- W3092364307 countsByYear W30923643072023 @default.
- W3092364307 crossrefType "journal-article" @default.
- W3092364307 hasAuthorship W3092364307A5007492415 @default.
- W3092364307 hasAuthorship W3092364307A5052572096 @default.
- W3092364307 hasAuthorship W3092364307A5088954352 @default.
- W3092364307 hasBestOaLocation W30923643072 @default.
- W3092364307 hasConcept C101104100 @default.
- W3092364307 hasConcept C105795698 @default.
- W3092364307 hasConcept C106159729 @default.
- W3092364307 hasConcept C118671147 @default.
- W3092364307 hasConcept C127413603 @default.
- W3092364307 hasConcept C139719470 @default.
- W3092364307 hasConcept C149782125 @default.
- W3092364307 hasConcept C159877910 @default.
- W3092364307 hasConcept C162324750 @default.
- W3092364307 hasConcept C204036174 @default.
- W3092364307 hasConcept C23922673 @default.
- W3092364307 hasConcept C33923547 @default.
- W3092364307 hasConcept C38935604 @default.
- W3092364307 hasConcept C5297727 @default.
- W3092364307 hasConcept C78519656 @default.
- W3092364307 hasConcept C91602232 @default.
- W3092364307 hasConceptScore W3092364307C101104100 @default.
- W3092364307 hasConceptScore W3092364307C105795698 @default.
- W3092364307 hasConceptScore W3092364307C106159729 @default.
- W3092364307 hasConceptScore W3092364307C118671147 @default.
- W3092364307 hasConceptScore W3092364307C127413603 @default.
- W3092364307 hasConceptScore W3092364307C139719470 @default.
- W3092364307 hasConceptScore W3092364307C149782125 @default.
- W3092364307 hasConceptScore W3092364307C159877910 @default.
- W3092364307 hasConceptScore W3092364307C162324750 @default.
- W3092364307 hasConceptScore W3092364307C204036174 @default.
- W3092364307 hasConceptScore W3092364307C23922673 @default.
- W3092364307 hasConceptScore W3092364307C33923547 @default.
- W3092364307 hasConceptScore W3092364307C38935604 @default.
- W3092364307 hasConceptScore W3092364307C5297727 @default.
- W3092364307 hasConceptScore W3092364307C78519656 @default.
- W3092364307 hasConceptScore W3092364307C91602232 @default.
- W3092364307 hasFunder F4320320667 @default.