Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092367503> ?p ?o ?g. }
- W3092367503 endingPage "1111" @default.
- W3092367503 startingPage "1091" @default.
- W3092367503 abstract "BACKGROUND: Radiation risk from computed tomography (CT) is always an issue for patients, especially those in clinical conditions in which repeated CT scanning is required. For patients undergoing repeated CT scanning, a low-dose protocol, such as sparse scanning, is often used, and consequently, an advanced reconstruction algorithm is also needed. OBJECTIVE: To develop a novel algorithm used for sparse-view CT reconstruction associated with the prior image. METHODS: A low-dose CT reconstruction method based on prior information of normal-dose image (PI-NDI) involving a transformed model for attenuation coefficients of the object to be reconstructed and prior information application in the forward-projection process was used to reconstruct CT images from sparse-view projection data. A digital extended cardiac-torso (XCAT) ventral phantom and a diagnostic head phantom were employed to evaluate the performance of the proposed PI-NDI method. The root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR) and mean percent absolute error (MPAE) of the reconstructed images were measured for quantitative evaluation of the proposed PI-NDI method. RESULTS: The reconstructed images with sparse-view projection data via the proposed PI-NDI method have higher quality by visual inspection than that via the compared methods. In terms of quantitative evaluations, the RMSE measured on the images reconstructed by the PI-NDI method with sparse projection data is comparable to that by MLEM-TV, PWLS-TV and PWLS-PICCS with fully sampled projection data. When the projection data are very sparse, images reconstructed by the PI-NDI method have higher PSNR values and lower MPAE values than those from the compared algorithms. CONCLUSIONS: This study presents a new low-dose CT reconstruction method based on prior information of normal-dose image (PI-NDI) for sparse-view CT image reconstruction. The experimental results validate that the new method has superior performance over other state-of-art methods." @default.
- W3092367503 created "2020-10-15" @default.
- W3092367503 creator A5024833275 @default.
- W3092367503 creator A5036957881 @default.
- W3092367503 creator A5039892918 @default.
- W3092367503 creator A5047536759 @default.
- W3092367503 creator A5052755615 @default.
- W3092367503 creator A5060765653 @default.
- W3092367503 creator A5077879865 @default.
- W3092367503 creator A5082974417 @default.
- W3092367503 creator A5087699676 @default.
- W3092367503 date "2020-12-05" @default.
- W3092367503 modified "2023-10-16" @default.
- W3092367503 title "Low-dose CT reconstruction method based on prior information of normal-dose image" @default.
- W3092367503 cites W1982527613 @default.
- W3092367503 cites W1988530788 @default.
- W3092367503 cites W1998457440 @default.
- W3092367503 cites W2014351445 @default.
- W3092367503 cites W2020820596 @default.
- W3092367503 cites W2021594562 @default.
- W3092367503 cites W2024668293 @default.
- W3092367503 cites W2049641710 @default.
- W3092367503 cites W2064271196 @default.
- W3092367503 cites W2069629287 @default.
- W3092367503 cites W2078773635 @default.
- W3092367503 cites W2097073572 @default.
- W3092367503 cites W2145203951 @default.
- W3092367503 cites W2149400409 @default.
- W3092367503 cites W2171697262 @default.
- W3092367503 cites W2281522373 @default.
- W3092367503 cites W2471535707 @default.
- W3092367503 cites W2517088289 @default.
- W3092367503 cites W2904413493 @default.
- W3092367503 cites W2914498953 @default.
- W3092367503 cites W2963392702 @default.
- W3092367503 cites W3105751747 @default.
- W3092367503 doi "https://doi.org/10.3233/xst-200716" @default.
- W3092367503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33044223" @default.
- W3092367503 hasPublicationYear "2020" @default.
- W3092367503 type Work @default.
- W3092367503 sameAs 3092367503 @default.
- W3092367503 citedByCount "6" @default.
- W3092367503 countsByYear W30923675032021 @default.
- W3092367503 countsByYear W30923675032022 @default.
- W3092367503 countsByYear W30923675032023 @default.
- W3092367503 crossrefType "journal-article" @default.
- W3092367503 hasAuthorship W3092367503A5024833275 @default.
- W3092367503 hasAuthorship W3092367503A5036957881 @default.
- W3092367503 hasAuthorship W3092367503A5039892918 @default.
- W3092367503 hasAuthorship W3092367503A5047536759 @default.
- W3092367503 hasAuthorship W3092367503A5052755615 @default.
- W3092367503 hasAuthorship W3092367503A5060765653 @default.
- W3092367503 hasAuthorship W3092367503A5077879865 @default.
- W3092367503 hasAuthorship W3092367503A5082974417 @default.
- W3092367503 hasAuthorship W3092367503A5087699676 @default.
- W3092367503 hasConcept C104293457 @default.
- W3092367503 hasConcept C105795698 @default.
- W3092367503 hasConcept C11413529 @default.
- W3092367503 hasConcept C115961682 @default.
- W3092367503 hasConcept C123688308 @default.
- W3092367503 hasConcept C139945424 @default.
- W3092367503 hasConcept C141379421 @default.
- W3092367503 hasConcept C154945302 @default.
- W3092367503 hasConcept C2775842073 @default.
- W3092367503 hasConcept C2989005 @default.
- W3092367503 hasConcept C31972630 @default.
- W3092367503 hasConcept C33923547 @default.
- W3092367503 hasConcept C35772409 @default.
- W3092367503 hasConcept C41008148 @default.
- W3092367503 hasConcept C55020928 @default.
- W3092367503 hasConcept C57493831 @default.
- W3092367503 hasConcept C71924100 @default.
- W3092367503 hasConcept C99498987 @default.
- W3092367503 hasConceptScore W3092367503C104293457 @default.
- W3092367503 hasConceptScore W3092367503C105795698 @default.
- W3092367503 hasConceptScore W3092367503C11413529 @default.
- W3092367503 hasConceptScore W3092367503C115961682 @default.
- W3092367503 hasConceptScore W3092367503C123688308 @default.
- W3092367503 hasConceptScore W3092367503C139945424 @default.
- W3092367503 hasConceptScore W3092367503C141379421 @default.
- W3092367503 hasConceptScore W3092367503C154945302 @default.
- W3092367503 hasConceptScore W3092367503C2775842073 @default.
- W3092367503 hasConceptScore W3092367503C2989005 @default.
- W3092367503 hasConceptScore W3092367503C31972630 @default.
- W3092367503 hasConceptScore W3092367503C33923547 @default.
- W3092367503 hasConceptScore W3092367503C35772409 @default.
- W3092367503 hasConceptScore W3092367503C41008148 @default.
- W3092367503 hasConceptScore W3092367503C55020928 @default.
- W3092367503 hasConceptScore W3092367503C57493831 @default.
- W3092367503 hasConceptScore W3092367503C71924100 @default.
- W3092367503 hasConceptScore W3092367503C99498987 @default.
- W3092367503 hasIssue "6" @default.
- W3092367503 hasLocation W30923675031 @default.
- W3092367503 hasOpenAccess W3092367503 @default.
- W3092367503 hasPrimaryLocation W30923675031 @default.
- W3092367503 hasRelatedWork W184367844 @default.
- W3092367503 hasRelatedWork W2011797925 @default.
- W3092367503 hasRelatedWork W2054219956 @default.