Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092383985> ?p ?o ?g. }
- W3092383985 endingPage "96" @default.
- W3092383985 startingPage "84" @default.
- W3092383985 abstract "Activating the right gene at the right time and place is essential for development. Emerging evidence suggests that this process is regulated by the mesoscale compartmentalization of the gene-control machinery, RNA polymerase II and its cofactors, within biomolecular condensates. Coupling gene activity to the reversible and dynamic process of condensate formation is proposed to enable the robust and precise changes in gene-regulatory programs during signaling and development. The macromolecular features that enable condensates and the regulatory pathways that control them are dysregulated in disease, highlighting their importance for normal physiology. In this review, we will discuss the role of condensates in gene activation; the multivalent features of protein, RNA, and DNA that enable reversible condensate formation; and how these processes are utilized in normal and disease biology. Understanding the regulation of condensates promises to provide novel insights into how organization of the gene-control machinery regulates development and disease. Activating the right gene at the right time and place is essential for development. Emerging evidence suggests that this process is regulated by the mesoscale compartmentalization of the gene-control machinery, RNA polymerase II and its cofactors, within biomolecular condensates. Coupling gene activity to the reversible and dynamic process of condensate formation is proposed to enable the robust and precise changes in gene-regulatory programs during signaling and development. The macromolecular features that enable condensates and the regulatory pathways that control them are dysregulated in disease, highlighting their importance for normal physiology. In this review, we will discuss the role of condensates in gene activation; the multivalent features of protein, RNA, and DNA that enable reversible condensate formation; and how these processes are utilized in normal and disease biology. Understanding the regulation of condensates promises to provide novel insights into how organization of the gene-control machinery regulates development and disease. The process of development is established by gene-regulatory networks, which determine body plan by controlling when and where specific genes are activated or repressed (Davidson, 2010Davidson E.H. Emerging properties of animal gene regulatory networks.Nature. 2010; 468: 911-920Crossref PubMed Scopus (332) Google Scholar). Through regulated readout of specific gene programs, a single genome can give rise to the large diversity of cellular phenotypes and functions found in multicellular organisms. Many processes play a role in gene regulation, and this review will focus on gene activation by recruitment of RNA Polymerase II (RNA Pol II) and its cofactors, which we will refer to collectively as the gene-control machinery. Hundreds of unique proteins and RNAs must work together at the correct genetic locus to ensure robust gene activation and must then be rapidly and precisely redistributed to activate new genes (Cramer, 2019Cramer P. Organization and regulation of gene transcription.Nature. 2019; 573: 45-54Crossref PubMed Scopus (29) Google Scholar; Roeder, 2019Roeder R.G. 50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms.Nat. Struct. Mol. Biol. 2019; 26: 783-791Crossref PubMed Scopus (14) Google Scholar). In this context, activating new genes or gene programs during development requires the coordination of RNA Pol II and its hundreds of regulatory cofactors that must find one another at the right gene at the right time. This intricate choreography is performed within the highly crowded environment of the nucleus (Hancock and Jeon, 2014Hancock R. Jeon K.W. Preface. New models of the cell nucleus: crowding, entropic forces, phase separation, and fractals.Int. Rev. Cell Mol. Biol. 2014; 307: xiiiCrossref PubMed Scopus (7) Google Scholar). Given the large number of independent events required, local retention of the gene-control machinery at specific genomic loci would mitigate stochasticity and enable or accelerate the process of gene activation (Hancock and Jeon, 2014Hancock R. Jeon K.W. Preface. New models of the cell nucleus: crowding, entropic forces, phase separation, and fractals.Int. Rev. Cell Mol. Biol. 2014; 307: xiiiCrossref PubMed Scopus (7) Google Scholar; Lemon and Tjian, 2000Lemon B. Tjian R. Orchestrated response: a symphony of transcription factors for gene control.Genes Dev. 2000; 14: 2551-2569Crossref PubMed Scopus (0) Google Scholar; Matsuda et al., 2014Matsuda H. Putzel G.G. Backman V. Szleifer I. Macromolecular crowding as a regulator of gene transcription.Biophys. J. 2014; 106: 1801-1810Abstract Full Text Full Text PDF PubMed Scopus (39) Google Scholar). Indeed, components of the gene-control machinery are found in dynamic clusters where many copies of individual factors are at high local concentrations (Boija et al., 2018Boija A. Klein I.A. Sabari B.R. Dall'Agnese A. Coffey E.L. Zamudio A.V. Li C.H. Shrinivas K. Manteiga J.C. Hannett N.M. et al.Transcription factors activate genes through the phase-separation capacity of their activation domains.Cell. 2018; 175: 1842-1855.e16Abstract Full Text Full Text PDF PubMed Scopus (192) Google Scholar; Cho et al., 2016Cho W.K. Jayanth N. English B.P. Inoue T. Andrews J.O. Conway W. Grimm J.B. Spille J.H. Lavis L.D. Lionnet T. Cisse I.I. RNA polymerase II cluster dynamics predict mRNA output in living cells.eLife. 2016; 5: 1123Crossref Scopus (75) Google Scholar, Cho et al., 2018Cho W.K. Spille J.H. Hecht M. Lee C. Li C. Grube V. Cissé I.I. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates.Science. 2018; 361: 412-415Crossref PubMed Scopus (213) Google Scholar; Chong et al., 2018Chong S. Dugast-Darzacq C. Liu Z. Dong P. Dailey G.M. Cattoglio C. Heckert A. Banala S. Lavis L. Darzacq X. Tjian R. Imaging dynamic and selective low-complexity domain interactions that control gene transcription.Science. 2018; 361Crossref Scopus (165) Google Scholar; Cissé et al., 2013Cissé I.I. Izeddin I. Causse S.Z. Boudarene L. Senecal A. Muresan L. Dugast-Darzacq C. Hajj B. Dahan M. Darzacq X. Real-time dynamics of RNA polymerase II clustering in live human cells.Science. 2013; 341: 664-667Crossref PubMed Scopus (0) Google Scholar; Iborra et al., 1996Iborra F.J. Pombo A. Jackson D.A. Cook P.R. Active RNA polymerases are localized within discrete transcription “factories’ in human nuclei.J. Cell Sci. 1996; 109: 1427-1436PubMed Google Scholar; Izeddin et al., 2014Izeddin I. Récamier V. Bosanac L. Cissé I.I. Boudarene L. Dugast-Darzacq C. Proux F. Bénichou O. Voituriez R. Bensaude O. et al.Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus.eLife. 2014; 3: 23352Crossref Scopus (131) Google Scholar; Jackson et al., 1993Jackson D.A. Hassan A.B. Errington R.J. Cook P.R. Visualization of focal sites of transcription within human nuclei.EMBO J. 1993; 12: 1059-1065Crossref PubMed Google Scholar; Liu et al., 2014aLiu Z. Legant W.R. Chen B.C. Li L. Grimm J.B. Lavis L.D. Betzig E. Tjian R. 3D imaging of Sox2 enhancer clusters in embryonic stem cells.eLife. 2014; 3: e04236Crossref PubMed Scopus (100) Google Scholar; Mir et al., 2017Mir M. Reimer A. Haines J.E. Li X.Y. Stadler M. Garcia H. Eisen M.B. Darzacq X. Dense bicoid hubs accentuate binding along the morphogen gradient.Genes Dev. 2017; 31: 1784-1794Crossref PubMed Scopus (44) Google Scholar, Mir et al., 2018Mir M. Stadler M.R. Ortiz S.A. Hannon C.E. Harrison M.M. Darzacq X. Eisen M.B. Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos.eLife. 2018; 7: e40497Crossref PubMed Scopus (23) Google Scholar; Papantonis and Cook, 2013Papantonis A. Cook P.R. Transcription factories: genome organization and gene regulation.Chem. Rev. 2013; 113: 8683-8705Crossref PubMed Scopus (112) Google Scholar; Sabari et al., 2018Sabari B.R. Dall'Agnese A. Boija A. Klein I.A. Coffey E.L. Shrinivas K. Abraham B.J. Hannett N.M. Zamudio A.V. Manteiga J.C. et al.Coactivator condensation at super-enhancers links phase separation and gene control.Science. 2018; 361: eaar3958Crossref PubMed Google Scholar; Tantale et al., 2016Tantale K. Mueller F. Kozulic-Pirher A. Lesne A. Victor J.M. Robert M.C. Capozi S. Chouaib R. Bäcker V. Mateos-Langerak J. et al.A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting.Nat. Commun. 2016; 7: 12248Crossref PubMed Google Scholar; Tsai et al., 2017Tsai A. Muthusamy A.K. Alves M.R. Lavis L.D. Singer R.H. Stern D.L. Crocker J. Nuclear microenvironments modulate transcription from low-affinity enhancers.eLife. 2017; 6: e28975Crossref PubMed Scopus (34) Google Scholar). The exact nature of these clusters is not yet fully resolved, but it is generally agreed that constituents are concentrated because they engage in weak multivalent interactions with a dynamic nuclear substructure (Woringer and Darzacq, 2018Woringer M. Darzacq X. Protein motion in the nucleus: from anomalous diffusion to weak interactions.Biochemical Society Transactions. 2018; 46: 945-956Crossref PubMed Scopus (0) Google Scholar). Emerging evidence supports a model where the gene-control machinery is locally concentrated by compartmentalization within dynamic biomolecular condensates. Multivalent interactions among polymers produce networks that can yield phase separation once the attractive force of the interacting polymers becomes stronger than their interaction with the solvent (Flory, 1942Flory P.J. Thermodynamics of high polymer solutions.J. Chem. Phys. 1942; 10: 51-61Crossref Google Scholar; Semenov and Rubinstein, 1998Semenov A.N. Rubinstein M. Thermoreversible gelation in solutions of associative polymers. 1.Statics Macromolecules. 1998; 31: 1373-1385Crossref Google Scholar). Phase transitions occur across sharp thresholds and are often reversible. These concepts were proposed to underlie cellular organization over a century ago (Wilson, 1899Wilson E.B. The structure of protoplasm.Science. 1899; 10: 33-45Crossref PubMed Scopus (44) Google Scholar) and have recently been reinvigorated and expanded as a framework to study the numerous membraneless organelles, intracellular bodies, and other localized concentrations of functionally related macromolecules collectively referred to as biomolecular condensates (Banani et al., 2017Banani S.F. Lee H.O. Hyman A.A. Rosen M.K. Biomolecular condensates: organizers of cellular biochemistry.Nat. Rev. Mol. Cell Biol. 2017; 18: 285-298Crossref PubMed Scopus (834) Google Scholar; Brangwynne et al., 2009Brangwynne C.P. Eckmann C.R. Courson D.S. Rybarska A. Hoege C. Gharakhani J. Jülicher F. Hyman A.A. Germline P granules are liquid droplets that localize by controlled dissolution/condensation.Science. 2009; 324: 1729-1732Crossref PubMed Scopus (852) Google Scholar; Choi et al., 2020Choi J.M. Holehouse A.S. Pappu R.V. Physical principles underlying the complex biology of intracellular phase transitions.Annu. Rev. Biophys. 2020; 49: 107-133Crossref PubMed Scopus (23) Google Scholar; Hyman et al., 2014Hyman A.A. Weber C.A. Jülicher F. Liquid-liquid phase separation in biology.Annu. Rev. Cell Dev. Biol. 2014; 30: 39-58Crossref PubMed Google Scholar; Shin and Brangwynne, 2017Shin Y. Brangwynne C.P. Liquid phase condensation in cell physiology and disease.Science. 2017; 357: eaaf4382Crossref PubMed Scopus (559) Google Scholar). The term biomolecular condensate is used to describe a concentration of biomolecules irrespective of the specific physical and chemical mechanism leading to its formation (Banani et al., 2017Banani S.F. Lee H.O. Hyman A.A. Rosen M.K. Biomolecular condensates: organizers of cellular biochemistry.Nat. Rev. Mol. Cell Biol. 2017; 18: 285-298Crossref PubMed Scopus (834) Google Scholar). While the phase separation of a single polymer in solution is well understood and has been shown to underlie the formation of macromolecular droplets in vitro and condensates in cells, the complex, heterogeneous, and nonequilibrium environment of the cell should be expected to cause deviations in the predictions of these formalisms (Choi et al., 2019Choi J.M. Dar F. Pappu R.V. LASSI: a lattice model for simulating phase transitions of multivalent proteins.PLoS Comput. Biol. 2019; 15: e1007028Crossref PubMed Scopus (21) Google Scholar; McSwiggen et al., 2019McSwiggen D.T. Mir M. Darzacq X. Tjian R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences.Genes Dev. 2019; 33: 1619-1634Crossref PubMed Scopus (29) Google Scholar; Riback et al., 2020Riback J.A. Zhu L. Ferrolino M.C. Tolbert M. Mitrea D.M. Sanders D.W. Wei M.-T. Kriwacki R.W. Brangwynne C.P. Composition-dependent thermodynamics of intracellular phase separation.Nature. 2020; 581: 209-214Crossref PubMed Scopus (0) Google Scholar). Nevertheless, when applied to biological systems, these concepts have led to numerous advances and breakthroughs related to the cellular organization of essential biological processes (see other reviews in this issue). Many nuclear processes are compartmentalized within condensates (Sabari et al., 2020Sabari B.R. Dall'Agnese A. Young R.A. Biomolecular condensates in the nucleus.Trends Biochem. Sci. 2020; https://doi.org/10.1016/j.tibs.2020.06.007Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar; Strom and Brangwynne, 2019Strom A.R. Brangwynne C.P. The liquid nucleome - phase transitions in the nucleus at a glance.J. Cell Sci. 2019; 132: jcs235093Crossref PubMed Scopus (0) Google Scholar; Zhu and Brangwynne, 2015Zhu L. Brangwynne C.P. Nuclear bodies: the emerging biophysics of nucleoplasmic phases.Curr. Opin. Cell Biol. 2015; 34: 23-30Crossref PubMed Scopus (135) Google Scholar). Here, we focus on an emerging role for condensates in regulating the initiation and activation of gene transcription, how this process is used during development to switch between gene expression programs, and how it is dysregulated in disease. Formation of on-demand and reversible local concentrations of functionally related proteins at specific enhancers and promoters is an attractive model for how cells respond to signals and how cell-state transitions are accomplished. Coupling the activation of genes to the formation of condensates would allow for precise and nonlinear changes in gene-expression programs in response to signaling and during development. We will first discuss how condensates influence gene activation followed by a review of the multivalent features of the gene-control machinery and specific genomic loci, which together enable formation of condensates. We will then focus on how these multivalent interactions are regulated to reposition condensates to new targets during development and how this process is dysregulated in disease. We will close by highlighting a few of the many open areas for future work. Gene activation is a multicomponent and multistep biochemical process that must occur at specific genomic loci. This is analogous to the multicomponent and multistep biochemical assembly of signaling clusters at the plasma membrane, where diffusion away from the site of signaling is mitigated by local retention of reactants within a condensate, leading to increased specific activity of the pathway (Case et al., 2019bCase L.B. Zhang X. Ditlev J.A. Rosen M.K. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins.Science. 2019; 363: 1093-1097Crossref PubMed Scopus (4) Google Scholar; Huang et al., 2019Huang W.Y.C. Alvarez S. Kondo Y. Lee Y.K. Chung J.K. Lam H.Y.M. Biswas K.H. Kuriyan J. Groves J.T. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS.Science. 2019; 363: 1098-1103Crossref PubMed Scopus (31) Google Scholar). Similarly, components of the gene-control machinery are locally retained at sites of gene activity (Cho et al., 2016Cho W.K. Jayanth N. English B.P. Inoue T. Andrews J.O. Conway W. Grimm J.B. Spille J.H. Lavis L.D. Lionnet T. Cisse I.I. RNA polymerase II cluster dynamics predict mRNA output in living cells.eLife. 2016; 5: 1123Crossref Scopus (75) Google Scholar; Li et al., 2019Li J. Dong A. Saydaminova K. Chang H. Wang G. Ochiai H. Yamamoto T. Pertsinidis A. Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells.Cell. 2019; 178: 491-506.e28Abstract Full Text Full Text PDF PubMed Scopus (14) Google Scholar; Mir et al., 2018Mir M. Stadler M.R. Ortiz S.A. Hannon C.E. Harrison M.M. Darzacq X. Eisen M.B. Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos.eLife. 2018; 7: e40497Crossref PubMed Scopus (23) Google Scholar). These high local concentrations have functional outcomes for gene expression, as the number of RNA Pol II molecules locally concentrated is positively correlated with the number of transcribed RNA molecules (Cho et al., 2016Cho W.K. Jayanth N. English B.P. Inoue T. Andrews J.O. Conway W. Grimm J.B. Spille J.H. Lavis L.D. Lionnet T. Cisse I.I. RNA polymerase II cluster dynamics predict mRNA output in living cells.eLife. 2016; 5: 1123Crossref Scopus (75) Google Scholar) and preventing clustering of the gene-control machinery leads to reduced gene expression (Li et al., 2019Li J. Dong A. Saydaminova K. Chang H. Wang G. Ochiai H. Yamamoto T. Pertsinidis A. Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells.Cell. 2019; 178: 491-506.e28Abstract Full Text Full Text PDF PubMed Scopus (14) Google Scholar). These high local concentrations can be attributed to RNA Pol II and its cofactors engaging in dynamic multivalent interactions with themselves and other components of condensates formed at specific genomic loci. Condensates composed of coactivator protein formed in cell-free nuclear extracts partition RNA Pol II and other cofactors (Sabari et al., 2018Sabari B.R. Dall'Agnese A. Boija A. Klein I.A. Coffey E.L. Shrinivas K. Abraham B.J. Hannett N.M. Zamudio A.V. Manteiga J.C. et al.Coactivator condensation at super-enhancers links phase separation and gene control.Science. 2018; 361: eaar3958Crossref PubMed Google Scholar). The degree to which TAF15 hydrogels partition the low-complexity C-terminal domain (CTD) of RNA Pol II in vitro positively correlates with the ability of that protein to activate transcription of a reporter gene in cells (Kwon et al., 2013Kwon I. Kato M. Xiang S. Wu L. Theodoropoulos P. Mirzaei H. Han T. Xie S. Corden J.L. McKnight S.L. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains.Cell. 2013; 155: 1049-1060Abstract Full Text Full Text PDF PubMed Scopus (237) Google Scholar). RNA Pol II condensate formation in vitro and clustering in cell nuclei are dependent on the length of the CTD (Boehning et al., 2018Boehning M. Dugast-Darzacq C. Rankovic M. Hansen A.S. Yu T. Marie-Nelly H. McSwiggen D.T. Kokic G. Dailey G.M. Cramer P. et al.RNA polymerase II clustering through carboxy-terminal domain phase separation.Nat. Struct. Mol. Biol. 2018; 25: 833-840Crossref PubMed Scopus (97) Google Scholar), indicating that the enzyme’s ability to cluster relies on the dynamic multivalent interactions modeled in vitro. In cells, synthetic condensates formed by light-induced clustering of defined protein domains compartmentalize RNA Pol II and locally enhance RNA synthesis (Wei et al., 2020Wei M.-T. Chang Y.-C. Shimobayashi S.F. Shin Y. Strom A.R. Brangwynne C.P. Nucleated transcriptional condensates amplify gene expression.Nat Cell Biol. 2020; https://doi.org/10.1038/s41556-020-00578-6Crossref Scopus (0) Google Scholar). Intriguingly, while all protein domains tested formed light-induced condensates, only some were capable of enhancing transcription (Wei et al., 2020Wei M.-T. Chang Y.-C. Shimobayashi S.F. Shin Y. Strom A.R. Brangwynne C.P. Nucleated transcriptional condensates amplify gene expression.Nat Cell Biol. 2020; https://doi.org/10.1038/s41556-020-00578-6Crossref Scopus (0) Google Scholar), highlighting the importance of condensate composition on function. These and other studies provide evidence that compartmentalization of the gene-control machinery within condensates promotes transcription of associated genes. Based on these and other studies, a picture of how condensates can influence gene activation is taking shape, whereby macromolecules capable of engaging in multivalent interactions are clustered together at specific genomic loci where they concentrate RNA Pol II and its many cofactors (Figure 1). This model predicts that the extent and frequency with which a locus can concentrate RNA Pol II and cofactor molecules will influence gene-expression output. This regulation by organization does not supersede the regulatory mechanisms described for RNA Pol II recruitment and activity (Cramer, 2019Cramer P. Organization and regulation of gene transcription.Nature. 2019; 573: 45-54Crossref PubMed Scopus (29) Google Scholar; Roeder, 2019Roeder R.G. 50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms.Nat. Struct. Mol. Biol. 2019; 26: 783-791Crossref PubMed Scopus (14) Google Scholar) but is a means to regulate whether involved factors do or do not find one another in the crowded environment of the nucleus. Additionally, the requirement for clustering of many factors together to ensure high transcriptional activity has the potential to reduce noise at sites of the genome less capable of promoting condensate formation, a feature that has also been proposed for signaling clusters (Case et al., 2019aCase L.B. Ditlev J.A. Rosen M.K. Regulation of transmembrane signaling by phase separation.Annu. Rev. Biophys. 2019; 48: 465-494Crossref PubMed Scopus (20) Google Scholar). This ability to robustly activate specific genes while maintaining other sites unexpressed is particularly desirable during cell-state transitions and in maintaining cell identity. This additional layer of regulation provided by condensates is mediated by dynamic multivalent interactions inherent to the gene-control machinery. The spatial organization of the gene-control machinery by highly dynamic and multivalent interactions has long been noted (Fuxreiter et al., 2008Fuxreiter M. Tompa P. Simon I. Uversky V.N. Hansen J.C. Asturias F.J. Malleable machines take shape in eukaryotic transcriptional regulation.Nat. Chem. Biol. 2008; 4: 728-737Crossref PubMed Scopus (148) Google Scholar; Kaiser et al., 2008Kaiser T.E. Intine R.V. Dundr M. De novo formation of a subnuclear body.Science. 2008; 322: 1713-1717Crossref PubMed Scopus (167) Google Scholar; Mao et al., 2011Mao Y.S. Zhang B. Spector D.L. Biogenesis and function of nuclear bodies.Trends Genet. 2011; 27: 295-306Abstract Full Text Full Text PDF PubMed Scopus (351) Google Scholar; Misteli, 2001Misteli T. Protein dynamics: implications for nuclear architecture and gene expression.Science. 2001; 291: 843-847Crossref PubMed Scopus (505) Google Scholar; Woringer et al., 2014Woringer M. Darzacq X. Izeddin I. Geometry of the nucleus: a perspective on gene expression regulation.Curr. Opin. Chem. Biol. 2014; 20: 112-119Crossref PubMed Scopus (34) Google Scholar), but largely understudied by conventional paradigms of gene activation. In the subsequent sections, we will discuss these dynamic multivalent interactions and how they are central to condensate formation, composition, and function. The combined effort of multivalent interactions among components of the gene-control machinery and their multivalent interactions with the genome underlie the formation of transcriptional condensates. DNA-binding transcription factors (TFs), transcriptional coactivators, regulatory enzymes, chromatin-associated cofactors, and RNA Pol II are capable of engaging in multivalent interactions with one another and with specific regions of the genome (Boehning et al., 2018Boehning M. Dugast-Darzacq C. Rankovic M. Hansen A.S. Yu T. Marie-Nelly H. McSwiggen D.T. Kokic G. Dailey G.M. Cramer P. et al.RNA polymerase II clustering through carboxy-terminal domain phase separation.Nat. Struct. Mol. Biol. 2018; 25: 833-840Crossref PubMed Scopus (97) Google Scholar; Boija et al., 2018Boija A. Klein I.A. Sabari B.R. Dall'Agnese A. Coffey E.L. Zamudio A.V. Li C.H. Shrinivas K. Manteiga J.C. Hannett N.M. et al.Transcription factors activate genes through the phase-separation capacity of their activation domains.Cell. 2018; 175: 1842-1855.e16Abstract Full Text Full Text PDF PubMed Scopus (192) Google Scholar; Kwon et al., 2013Kwon I. Kato M. Xiang S. Wu L. Theodoropoulos P. Mirzaei H. Han T. Xie S. Corden J.L. McKnight S.L. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains.Cell. 2013; 155: 1049-1060Abstract Full Text Full Text PDF PubMed Scopus (237) Google Scholar; Lu et al., 2018Lu H. Yu D. Hansen A.S. Ganguly S. Liu R. Heckert A. Darzacq X. Zhou Q. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.Nature. 2018; 558: 318-323Crossref PubMed Scopus (116) Google Scholar; Sabari et al., 2018Sabari B.R. Dall'Agnese A. Boija A. Klein I.A. Coffey E.L. Shrinivas K. Abraham B.J. Hannett N.M. Zamudio A.V. Manteiga J.C. et al.Coactivator condensation at super-enhancers links phase separation and gene control.Science. 2018; 361: eaar3958Crossref PubMed Google Scholar; Shrinivas et al., 2019Shrinivas K. Sabari B.R. Coffey E.L. Klein I.A. Boija A. Zamudio A.V. Schuijers J. Hannett N.M. Sharp P.A. Young R.A. Chakraborty A.K. Enhancer features that drive formation of transcriptional condensates.Mol. Cell. 2019; 75: 549-561.e7Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar). Chromatin, the physiologic form of the genome, has many regulated inter- and intramolecular interactions leading to a variety of higher-order forms (Barbieri et al., 2012Barbieri M. Chotalia M. Fraser J. Lavitas L.M. Dostie J. Pombo A. Nicodemi M. Complexity of chromatin folding is captured by the strings and binders switch model.Proc. Natl. Acad. Sci. USA. 2012; 109: 16173-16178Crossref PubMed Scopus (243) Google Scholar; Gibson et al., 2019Gibson B.A. Doolittle L.K. Schneider M.W.G. Jensen L.E. Gamarra N. Henry L. Gerlich D.W. Redding S. Rosen M.K. Organization of chromatin by intrinsic and regulated phase separation.Cell. 2019; 179: 470-484.e21Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar; Lanctôt et al., 2007Lanctôt C. Cheutin T. Cremer M. Cavalli G. Cremer T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions.Nat. Rev. Genet. 2007; 8: 104-115Crossref PubMed Scopus (572) Google Scholar; Misteli, 2007Misteli T. Beyond the sequence: cellular organization of genome function.Cell. 2007; 128: 787-800Abstract Full Text Full Text PDF PubMed Scopus (803) Google Scholar; Sanulli et al., 2019Sanulli S. Trnka M.J. Dharmarajan V. Tibble R.W. Pascal B.D. Burlingame A.L. Griffin P.R. Gross J.D. Narlikar G.J. HP1 reshapes nucleosome core to promote phase separation of heterochromatin.Nature. 2019; 575: 390-394Crossref PubMed Scopus (23) Google Scholar; Woodcock and Ghosh, 2010Woodcock C.L. Ghosh R.P. Chromatin higher-order structure and dynamics.Cold Spring Harbor Perspect. Biol. 2010; 2: a000596Crossref PubMed Scopus (0) Google Scholar). This sets up at least two tiers of relevant interactions: those involving the genome in the context of chromatin and those involving components that are locally concentrated (Figures 2A and 2B ). Together, these two layers can coordinate the establishment of condensates at specific genomic loci and determine the composition of concentrated components (Figure 2C). Modulating the interactions at either tier can change when and where condensates will form and with which components. The chromatin fiber has many layers of regulated interactions that can reversibly tune the type and number of interactions at specific regions (Figure 2A). The compaction of the chromatin fiber into various chromatin-rich condensates (Gibson et al., 2019Gibson B.A. Doolittle L.K. Schneider M.W.G. Jensen L.E. Gamarra N. Henry L. Gerlich D.W. Redding S. Rosen M.K. Organization of chromatin by intrinsic and regulated phase separation.Cell. 2019; 179: 470-484.e21Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar; Larson et al., 2017Larson A.G. Elnatan D. Keenen M.M. Trnka M.J. Johnston J.B. Burlingame A.L. Agard D.A. Redding S. Narlikar G.J. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin.Nature. 2017; 547: 236-240Crossref PubMed Scopus (396) Google Scholar; Plys et al., 2019Plys A.J. Davis C.P. Kim J. Rizki G. Keenen M.M. Marr S.K. Kingston R.E. Phase separation of polycomb-repressive complex 1 is governed by a charged disordered region of CBX2.Genes Dev. 2019; 33: 799-813Crossref PubMed Scopus (28) Google Scholar; Sanulli et al., 2019Sanulli S. Trnka M.J. Dharmarajan V. Tibble R.W. Pascal B.D. Burlingame A.L. Griffin P.R. Gross J.D. Narlikar G.J. HP1 reshapes nucleosome core to promote phase separation of heterochromatin.Nature. 2019; 575: 390-394Crossref PubMed Scopus (23) Google Scholar; Strom et al., 2017Strom A.R. Emelyanov A.V. Mir M. Fyodorov D.V. Darzacq X. Karpen G.H. Phase separation drives heterochromatin domain formation.Nature. 2017; 547: 241-245Crossref PubMed Scopus (422) Google Scholar) can occlude binding of activating factors. Chromatin-rich condensates can be dissolved by the regulation of nucleosome spacing and reversible acetylation of histone proteins (Gibson et al., 2019Gibson B.A. Doolittle L.K. Schneider M.W.G. Jensen L.E. Gamarra N. Henry L. Gerlich D.W. Redding S. Rosen M.K. Organization of chromatin by intrinsic and regulated phase separation.Cell. 2019; 179: 470-484.e21Abstract Fu" @default.
- W3092383985 created "2020-10-15" @default.
- W3092383985 creator A5064694236 @default.
- W3092383985 date "2020-10-01" @default.
- W3092383985 modified "2023-10-14" @default.
- W3092383985 title "Biomolecular Condensates and Gene Activation in Development and Disease" @default.
- W3092383985 cites W1529048149 @default.
- W3092383985 cites W1560916735 @default.
- W3092383985 cites W1739743960 @default.
- W3092383985 cites W1971803615 @default.
- W3092383985 cites W1975210552 @default.
- W3092383985 cites W1979187818 @default.
- W3092383985 cites W1979895333 @default.
- W3092383985 cites W1984015499 @default.
- W3092383985 cites W1985717866 @default.
- W3092383985 cites W1992219948 @default.
- W3092383985 cites W1994338223 @default.
- W3092383985 cites W2001142914 @default.
- W3092383985 cites W2004605636 @default.
- W3092383985 cites W2011282682 @default.
- W3092383985 cites W2011983814 @default.
- W3092383985 cites W2016015848 @default.
- W3092383985 cites W2019129277 @default.
- W3092383985 cites W2019831987 @default.
- W3092383985 cites W2022938456 @default.
- W3092383985 cites W2027703497 @default.
- W3092383985 cites W2031015166 @default.
- W3092383985 cites W2032464841 @default.
- W3092383985 cites W2035301928 @default.
- W3092383985 cites W2035615447 @default.
- W3092383985 cites W2036158314 @default.
- W3092383985 cites W2038235796 @default.
- W3092383985 cites W2041611886 @default.
- W3092383985 cites W2045974768 @default.
- W3092383985 cites W2050175422 @default.
- W3092383985 cites W2054352933 @default.
- W3092383985 cites W2056147363 @default.
- W3092383985 cites W2063534825 @default.
- W3092383985 cites W2073190029 @default.
- W3092383985 cites W2080479776 @default.
- W3092383985 cites W2082414039 @default.
- W3092383985 cites W2083260329 @default.
- W3092383985 cites W2090160722 @default.
- W3092383985 cites W2093140735 @default.
- W3092383985 cites W2094468530 @default.
- W3092383985 cites W2098497185 @default.
- W3092383985 cites W2098549100 @default.
- W3092383985 cites W2099685145 @default.
- W3092383985 cites W2100287099 @default.
- W3092383985 cites W2101994612 @default.
- W3092383985 cites W2104746705 @default.
- W3092383985 cites W2107244138 @default.
- W3092383985 cites W2107252117 @default.
- W3092383985 cites W2125987139 @default.
- W3092383985 cites W2126303237 @default.
- W3092383985 cites W2128355851 @default.
- W3092383985 cites W2128940002 @default.
- W3092383985 cites W2131472300 @default.
- W3092383985 cites W2134762011 @default.
- W3092383985 cites W2139066576 @default.
- W3092383985 cites W2141991853 @default.
- W3092383985 cites W2143593606 @default.
- W3092383985 cites W2146404878 @default.
- W3092383985 cites W2150044225 @default.
- W3092383985 cites W2150406181 @default.
- W3092383985 cites W2161797274 @default.
- W3092383985 cites W2164508407 @default.
- W3092383985 cites W2166295771 @default.
- W3092383985 cites W2185560378 @default.
- W3092383985 cites W2224056471 @default.
- W3092383985 cites W2308616703 @default.
- W3092383985 cites W2309374135 @default.
- W3092383985 cites W2347104320 @default.
- W3092383985 cites W2411956266 @default.
- W3092383985 cites W2491614679 @default.
- W3092383985 cites W2515307706 @default.
- W3092383985 cites W2516806610 @default.
- W3092383985 cites W2534922319 @default.
- W3092383985 cites W2535403725 @default.
- W3092383985 cites W2553711301 @default.
- W3092383985 cites W2556513628 @default.
- W3092383985 cites W2566521622 @default.
- W3092383985 cites W2570943423 @default.
- W3092383985 cites W2590568317 @default.
- W3092383985 cites W2594764564 @default.
- W3092383985 cites W2595869676 @default.
- W3092383985 cites W2616052794 @default.
- W3092383985 cites W2617594926 @default.
- W3092383985 cites W2620848075 @default.
- W3092383985 cites W2694038906 @default.
- W3092383985 cites W2722642526 @default.
- W3092383985 cites W2747333975 @default.
- W3092383985 cites W2756821926 @default.
- W3092383985 cites W2759609596 @default.
- W3092383985 cites W2761461280 @default.
- W3092383985 cites W2774855547 @default.
- W3092383985 cites W2784370070 @default.
- W3092383985 cites W2784401093 @default.