Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092477593> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3092477593 endingPage "186198" @default.
- W3092477593 startingPage "186191" @default.
- W3092477593 abstract "In recent years, a surging development of vehicles and continuous enhancement of transportation infrastructures have been witnessed worldwide, leading to a remarkable growing of traffic flow data. The traffic data is highly valuable in today’s society, accurate modelling of traffic flow for the concerned areas can significantly benefit the government agencies, related commercial departments and individuals. Specifically, road users are allowed to make better traveling decisions, avoid traffic congestion, reduce carbon emissions and improve traffic operation efficiency. In order to estimate the possible traffic flow scenarios within a specific area for multiple horizons, we propose a scenario generation model based on sequential generative adversarial networks (LSTM-GAN) where the long short term memory (LSTM) network is incorporated to capture the temporal dynamics involved in traffic flows. Through game training, the spatiotemporal scenarios of traffic flow in line with the characteristics of observed road network traffic flow can be well generated. These traffic scenarios can be applied in the design and planning of road traffic system, as well as in the virtual training cases of intelligent driving." @default.
- W3092477593 created "2020-10-15" @default.
- W3092477593 creator A5008456610 @default.
- W3092477593 creator A5051746072 @default.
- W3092477593 creator A5057422251 @default.
- W3092477593 creator A5067106167 @default.
- W3092477593 creator A5076393833 @default.
- W3092477593 creator A5080879802 @default.
- W3092477593 creator A5088431748 @default.
- W3092477593 date "2020-01-01" @default.
- W3092477593 modified "2023-10-17" @default.
- W3092477593 title "Spatiotemporal Scenario Generation of Traffic Flow Based on LSTM-GAN" @default.
- W3092477593 cites W1587522735 @default.
- W3092477593 cites W2035901155 @default.
- W3092477593 cites W2154500405 @default.
- W3092477593 cites W2577894039 @default.
- W3092477593 cites W2739824434 @default.
- W3092477593 cites W2887292121 @default.
- W3092477593 cites W2902363208 @default.
- W3092477593 cites W2985178537 @default.
- W3092477593 cites W3005250406 @default.
- W3092477593 cites W3005566349 @default.
- W3092477593 doi "https://doi.org/10.1109/access.2020.3029230" @default.
- W3092477593 hasPublicationYear "2020" @default.
- W3092477593 type Work @default.
- W3092477593 sameAs 3092477593 @default.
- W3092477593 citedByCount "12" @default.
- W3092477593 countsByYear W30924775932021 @default.
- W3092477593 countsByYear W30924775932022 @default.
- W3092477593 countsByYear W30924775932023 @default.
- W3092477593 crossrefType "journal-article" @default.
- W3092477593 hasAuthorship W3092477593A5008456610 @default.
- W3092477593 hasAuthorship W3092477593A5051746072 @default.
- W3092477593 hasAuthorship W3092477593A5057422251 @default.
- W3092477593 hasAuthorship W3092477593A5067106167 @default.
- W3092477593 hasAuthorship W3092477593A5076393833 @default.
- W3092477593 hasAuthorship W3092477593A5080879802 @default.
- W3092477593 hasAuthorship W3092477593A5088431748 @default.
- W3092477593 hasBestOaLocation W30924775931 @default.
- W3092477593 hasConcept C121332964 @default.
- W3092477593 hasConcept C38349280 @default.
- W3092477593 hasConcept C41008148 @default.
- W3092477593 hasConcept C57879066 @default.
- W3092477593 hasConceptScore W3092477593C121332964 @default.
- W3092477593 hasConceptScore W3092477593C38349280 @default.
- W3092477593 hasConceptScore W3092477593C41008148 @default.
- W3092477593 hasConceptScore W3092477593C57879066 @default.
- W3092477593 hasLocation W30924775931 @default.
- W3092477593 hasOpenAccess W3092477593 @default.
- W3092477593 hasPrimaryLocation W30924775931 @default.
- W3092477593 hasRelatedWork W2049775471 @default.
- W3092477593 hasRelatedWork W2093578348 @default.
- W3092477593 hasRelatedWork W2350741829 @default.
- W3092477593 hasRelatedWork W2358668433 @default.
- W3092477593 hasRelatedWork W2376932109 @default.
- W3092477593 hasRelatedWork W2382290278 @default.
- W3092477593 hasRelatedWork W2390279801 @default.
- W3092477593 hasRelatedWork W2748952813 @default.
- W3092477593 hasRelatedWork W2899084033 @default.
- W3092477593 hasRelatedWork W3004735627 @default.
- W3092477593 hasVolume "8" @default.
- W3092477593 isParatext "false" @default.
- W3092477593 isRetracted "false" @default.
- W3092477593 magId "3092477593" @default.
- W3092477593 workType "article" @default.