Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092516560> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3092516560 abstract "With the rapid development of artificial intelligence, the traditional computer architecture can no longer meet the growing computing performance requirements. At the same time, with the chip manufacturing process approaching the physical limit, a single electronic technology cannot adapt the rapid development of artificial intelligence chips, so there is an urgent need for new computing chips. Photonic neural network chip, which combines artificial intelligence, silicon photonic, integrated circuit and other technologies, will get unprecedented opportunities for the development. Silicon based opto-electronic integration is a large-scale integration technology with optical signal as the main information carrier. It can integrate micro-nano-size optical and electrical devices on the silicon substrate, to form a new large-scale integration chip with comprehensive functions. At present, the development of silicon photonic devices is mainly focused on the field of optical communication and data center, while silicon photonic devices for photonic neural networks are still in the initial stage. Starting from the underlying unit devices, silicon-based photonic devices were studied deeply by combining the artificial neural network with the silicon photonic technology in this paper. Based on 200 mm CMOS process, a lot of process modules for photonic neural network were developed. According to the characteristics of photonic neural network architecture and the performance requirements for the basic unit devices, a series of silicon photonic devices, such as waveguides, grating couplers, MMI, thermal modulators, and other unit devices, were designed and developed. These devices provide important basic conditions for the implementation of high performance photonic neural network chips." @default.
- W3092516560 created "2020-10-15" @default.
- W3092516560 creator A5001720031 @default.
- W3092516560 creator A5029360035 @default.
- W3092516560 creator A5029695887 @default.
- W3092516560 creator A5063066634 @default.
- W3092516560 creator A5066930349 @default.
- W3092516560 creator A5070408870 @default.
- W3092516560 creator A5073543654 @default.
- W3092516560 creator A5090789682 @default.
- W3092516560 date "2020-10-10" @default.
- W3092516560 modified "2023-09-23" @default.
- W3092516560 title "Study on silicon photonic devices for photonic neural network" @default.
- W3092516560 cites W1994709512 @default.
- W3092516560 cites W2005514059 @default.
- W3092516560 cites W2015431987 @default.
- W3092516560 cites W2051033774 @default.
- W3092516560 cites W2086842181 @default.
- W3092516560 cites W2117916208 @default.
- W3092516560 cites W4246799416 @default.
- W3092516560 cites W4256501225 @default.
- W3092516560 doi "https://doi.org/10.1117/12.2573368" @default.
- W3092516560 hasPublicationYear "2020" @default.
- W3092516560 type Work @default.
- W3092516560 sameAs 3092516560 @default.
- W3092516560 citedByCount "0" @default.
- W3092516560 crossrefType "proceedings-article" @default.
- W3092516560 hasAuthorship W3092516560A5001720031 @default.
- W3092516560 hasAuthorship W3092516560A5029360035 @default.
- W3092516560 hasAuthorship W3092516560A5029695887 @default.
- W3092516560 hasAuthorship W3092516560A5063066634 @default.
- W3092516560 hasAuthorship W3092516560A5066930349 @default.
- W3092516560 hasAuthorship W3092516560A5070408870 @default.
- W3092516560 hasAuthorship W3092516560A5073543654 @default.
- W3092516560 hasAuthorship W3092516560A5090789682 @default.
- W3092516560 hasConcept C119423029 @default.
- W3092516560 hasConcept C127413603 @default.
- W3092516560 hasConcept C154945302 @default.
- W3092516560 hasConcept C165005293 @default.
- W3092516560 hasConcept C192562407 @default.
- W3092516560 hasConcept C20788544 @default.
- W3092516560 hasConcept C22799297 @default.
- W3092516560 hasConcept C24326235 @default.
- W3092516560 hasConcept C41008148 @default.
- W3092516560 hasConcept C49040817 @default.
- W3092516560 hasConcept C50644808 @default.
- W3092516560 hasConcept C544956773 @default.
- W3092516560 hasConcept C76155785 @default.
- W3092516560 hasConceptScore W3092516560C119423029 @default.
- W3092516560 hasConceptScore W3092516560C127413603 @default.
- W3092516560 hasConceptScore W3092516560C154945302 @default.
- W3092516560 hasConceptScore W3092516560C165005293 @default.
- W3092516560 hasConceptScore W3092516560C192562407 @default.
- W3092516560 hasConceptScore W3092516560C20788544 @default.
- W3092516560 hasConceptScore W3092516560C22799297 @default.
- W3092516560 hasConceptScore W3092516560C24326235 @default.
- W3092516560 hasConceptScore W3092516560C41008148 @default.
- W3092516560 hasConceptScore W3092516560C49040817 @default.
- W3092516560 hasConceptScore W3092516560C50644808 @default.
- W3092516560 hasConceptScore W3092516560C544956773 @default.
- W3092516560 hasConceptScore W3092516560C76155785 @default.
- W3092516560 hasLocation W30925165601 @default.
- W3092516560 hasOpenAccess W3092516560 @default.
- W3092516560 hasPrimaryLocation W30925165601 @default.
- W3092516560 hasRelatedWork W10074007 @default.
- W3092516560 hasRelatedWork W11448259 @default.
- W3092516560 hasRelatedWork W5464879 @default.
- W3092516560 hasRelatedWork W6496871 @default.
- W3092516560 hasRelatedWork W7915100 @default.
- W3092516560 hasRelatedWork W7923645 @default.
- W3092516560 hasRelatedWork W8494580 @default.
- W3092516560 hasRelatedWork W8669622 @default.
- W3092516560 hasRelatedWork W8705646 @default.
- W3092516560 hasRelatedWork W2413974 @default.
- W3092516560 isParatext "false" @default.
- W3092516560 isRetracted "false" @default.
- W3092516560 magId "3092516560" @default.
- W3092516560 workType "article" @default.