Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092541566> ?p ?o ?g. }
- W3092541566 abstract "Abstract Overfertilization with nitrogen fertilizers has damaged the environment and health of soil; yields are declining, while the population continues to rise. Soil is a complex, living organism which is constantly evolving, physically, chemically and biologically. Standard laboratory testing of soil to determine the levels of nitrogen (mainly NH 4 + and NO 3 − ) is infrequent as it is expensive and slow and levels of nitrogen vary on short timescales. Current testing practices, therefore, are not useful to guide fertilization. We demonstrate that Point-of-Use (PoU) measurements of NH 4 + , when combined with soil conductivity, pH, easily accessible weather (in this study, we simulated weather in the laboratory) and timing data (i.e. days passed since fertilization), allow instantaneous prediction of levels of NO 3 − in soil with of R 2 =0.70 using a machine learning (ML) model (the use of higher-precision laboratory measurements instead of PoU measurements increase R 2 to 0.87 for the same model). We also show that a long short-term memory recurrent neural network model can be used to predict levels of NH 4 + and NO 3 − up to 12 days into the future from a single measurement at day one, with R 2 NH4+ = 0.64 and R 2 NO3- = 0.70, for unseen weather conditions. To measure NH 4 + in soil at the PoU easily and inexpensively, we also developed a new sensor that uses chemically functionalized near ‘zero-cost’ paper-based electrical gas sensors. This new technology can detect the concentration of NH 4 + in soil down to 3±1ppm (R 2 =0.85). Gas-phase sensing provides a robust method of sensing NH 4 + due to the reduced complexity of the gas-phase sample. Our machine learning-based approach eliminates the need of using dedicated, expensive sensing instruments to determine the levels of NO 3 − in soil which is difficult to measure reliably with inexpensive technologies; furthermore, crucial nitrogenous soil nutrients can be determined and predicted with enough accuracy to forecast the impact of climate on fertilization planning, and tune timing for crop requirements, reducing overfertilization while improving crop yields." @default.
- W3092541566 created "2020-10-15" @default.
- W3092541566 creator A5025484051 @default.
- W3092541566 creator A5029354492 @default.
- W3092541566 creator A5037268322 @default.
- W3092541566 creator A5051136929 @default.
- W3092541566 creator A5054598998 @default.
- W3092541566 creator A5062791208 @default.
- W3092541566 creator A5069864834 @default.
- W3092541566 date "2020-10-09" @default.
- W3092541566 modified "2023-09-27" @default.
- W3092541566 title "Determining and Predicting Soil Chemistry with a Point-of-Use Sensor Toolkit and Machine Learning Model" @default.
- W3092541566 cites W1965917549 @default.
- W3092541566 cites W1994738086 @default.
- W3092541566 cites W2011937373 @default.
- W3092541566 cites W2020061067 @default.
- W3092541566 cites W2034159661 @default.
- W3092541566 cites W2046551756 @default.
- W3092541566 cites W2060192010 @default.
- W3092541566 cites W2072671822 @default.
- W3092541566 cites W2076532457 @default.
- W3092541566 cites W2101791894 @default.
- W3092541566 cites W2119797678 @default.
- W3092541566 cites W2124252298 @default.
- W3092541566 cites W2128546734 @default.
- W3092541566 cites W2167072110 @default.
- W3092541566 cites W2231297756 @default.
- W3092541566 cites W2332542316 @default.
- W3092541566 cites W2345008350 @default.
- W3092541566 cites W2399675776 @default.
- W3092541566 cites W2466247310 @default.
- W3092541566 cites W2563560242 @default.
- W3092541566 cites W2741922227 @default.
- W3092541566 cites W2746661417 @default.
- W3092541566 cites W2751567280 @default.
- W3092541566 cites W2786072233 @default.
- W3092541566 cites W2791394120 @default.
- W3092541566 cites W2803852754 @default.
- W3092541566 cites W2897477323 @default.
- W3092541566 cites W2900195258 @default.
- W3092541566 cites W2908541131 @default.
- W3092541566 cites W2940854071 @default.
- W3092541566 cites W2944390192 @default.
- W3092541566 cites W2945247767 @default.
- W3092541566 cites W2980938923 @default.
- W3092541566 cites W3027612473 @default.
- W3092541566 cites W3028032833 @default.
- W3092541566 cites W3034853167 @default.
- W3092541566 cites W4249620871 @default.
- W3092541566 cites W4299645302 @default.
- W3092541566 doi "https://doi.org/10.1101/2020.10.08.331371" @default.
- W3092541566 hasPublicationYear "2020" @default.
- W3092541566 type Work @default.
- W3092541566 sameAs 3092541566 @default.
- W3092541566 citedByCount "1" @default.
- W3092541566 countsByYear W30925415662022 @default.
- W3092541566 crossrefType "posted-content" @default.
- W3092541566 hasAuthorship W3092541566A5025484051 @default.
- W3092541566 hasAuthorship W3092541566A5029354492 @default.
- W3092541566 hasAuthorship W3092541566A5037268322 @default.
- W3092541566 hasAuthorship W3092541566A5051136929 @default.
- W3092541566 hasAuthorship W3092541566A5054598998 @default.
- W3092541566 hasAuthorship W3092541566A5062791208 @default.
- W3092541566 hasAuthorship W3092541566A5069864834 @default.
- W3092541566 hasBestOaLocation W30925415661 @default.
- W3092541566 hasConcept C119857082 @default.
- W3092541566 hasConcept C144024400 @default.
- W3092541566 hasConcept C149923435 @default.
- W3092541566 hasConcept C154945302 @default.
- W3092541566 hasConcept C159390177 @default.
- W3092541566 hasConcept C178790620 @default.
- W3092541566 hasConcept C185592680 @default.
- W3092541566 hasConcept C2524010 @default.
- W3092541566 hasConcept C28719098 @default.
- W3092541566 hasConcept C2908647359 @default.
- W3092541566 hasConcept C33923547 @default.
- W3092541566 hasConcept C39432304 @default.
- W3092541566 hasConcept C41008148 @default.
- W3092541566 hasConcept C50644808 @default.
- W3092541566 hasConcept C537208039 @default.
- W3092541566 hasConcept C6557445 @default.
- W3092541566 hasConcept C86803240 @default.
- W3092541566 hasConcept C88972607 @default.
- W3092541566 hasConceptScore W3092541566C119857082 @default.
- W3092541566 hasConceptScore W3092541566C144024400 @default.
- W3092541566 hasConceptScore W3092541566C149923435 @default.
- W3092541566 hasConceptScore W3092541566C154945302 @default.
- W3092541566 hasConceptScore W3092541566C159390177 @default.
- W3092541566 hasConceptScore W3092541566C178790620 @default.
- W3092541566 hasConceptScore W3092541566C185592680 @default.
- W3092541566 hasConceptScore W3092541566C2524010 @default.
- W3092541566 hasConceptScore W3092541566C28719098 @default.
- W3092541566 hasConceptScore W3092541566C2908647359 @default.
- W3092541566 hasConceptScore W3092541566C33923547 @default.
- W3092541566 hasConceptScore W3092541566C39432304 @default.
- W3092541566 hasConceptScore W3092541566C41008148 @default.
- W3092541566 hasConceptScore W3092541566C50644808 @default.
- W3092541566 hasConceptScore W3092541566C537208039 @default.
- W3092541566 hasConceptScore W3092541566C6557445 @default.
- W3092541566 hasConceptScore W3092541566C86803240 @default.