Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092603238> ?p ?o ?g. }
- W3092603238 abstract "Introduction Meeting ambitious global health goals with limited resources requires a precision public health (PxPH) approach. Here we describe how integrating data collection optimisation, traditional analytics and causal artificial intelligence/machine learning (ML) can be used in a use case for increasing hospital deliveries of newborns in Uttar Pradesh, India. Methods Using a systematic behavioural framework we designed a large-scale survey on perceptual, interpersonal and structural drivers of women’s behaviour around childbirth (n=5613). Multivariate logistic regression identified factors associated with institutional delivery (ID). Causal ML determined the cause-and-effect ordering of these factors. Variance decomposition was used to parse sources of variation in delivery location, and a supervised learning algorithm was used to distinguish population subgroups. Results Among the factors found associated with ID, the causal model showed that having a delivery plan (OR=6.1, 95% CI 6.0 to 6.3), believing the hospital is safer than home (OR=5.4, 95% CI 5.1 to 5.6) and awareness of financial incentives were direct causes of ID (OR=3.4, 95% CI 3.3 to 3.5). Distance to the hospital, borrowing delivery money and the primary decision-maker were not causal. Individual-level factors contributed 69% of variance in delivery location. The segmentation analysis showed four distinct subgroups differentiated by ID risk perception, parity and planning. Conclusion These findings generate a holistic picture of the drivers and barriers to ID in Uttar Pradesh and suggest distinct intervention points for different women. This demonstrates data optimised to identify key behavioural drivers, coupled with traditional and ML analytics, can help design a PxPH approach that maximise the impact of limited resources." @default.
- W3092603238 created "2020-10-15" @default.
- W3092603238 creator A5006076210 @default.
- W3092603238 creator A5010679444 @default.
- W3092603238 creator A5034525330 @default.
- W3092603238 creator A5036621193 @default.
- W3092603238 creator A5036981898 @default.
- W3092603238 creator A5057320116 @default.
- W3092603238 creator A5061154880 @default.
- W3092603238 creator A5061325810 @default.
- W3092603238 creator A5072520289 @default.
- W3092603238 creator A5072865412 @default.
- W3092603238 creator A5078336780 @default.
- W3092603238 creator A5089705547 @default.
- W3092603238 date "2020-10-01" @default.
- W3092603238 modified "2023-09-24" @default.
- W3092603238 title "Closing the gap on institutional delivery in northern India: a case study of how integrated machine learning approaches can enable precision public health" @default.
- W3092603238 cites W1495034091 @default.
- W3092603238 cites W1973433652 @default.
- W3092603238 cites W1987552279 @default.
- W3092603238 cites W1995474599 @default.
- W3092603238 cites W2019655958 @default.
- W3092603238 cites W2036638391 @default.
- W3092603238 cites W2036705955 @default.
- W3092603238 cites W2049296521 @default.
- W3092603238 cites W2049910836 @default.
- W3092603238 cites W2062594082 @default.
- W3092603238 cites W2122693994 @default.
- W3092603238 cites W2153476503 @default.
- W3092603238 cites W2159190222 @default.
- W3092603238 cites W2169367346 @default.
- W3092603238 cites W2305754340 @default.
- W3092603238 cites W2489846045 @default.
- W3092603238 cites W2516082548 @default.
- W3092603238 cites W2528975767 @default.
- W3092603238 cites W2547340922 @default.
- W3092603238 cites W2573268273 @default.
- W3092603238 cites W2594603616 @default.
- W3092603238 cites W2734029054 @default.
- W3092603238 cites W2751854602 @default.
- W3092603238 cites W2758561236 @default.
- W3092603238 cites W2781122472 @default.
- W3092603238 cites W2789770860 @default.
- W3092603238 cites W2790653501 @default.
- W3092603238 cites W2795948880 @default.
- W3092603238 cites W2888967035 @default.
- W3092603238 cites W2889925779 @default.
- W3092603238 cites W2895193989 @default.
- W3092603238 cites W2902008863 @default.
- W3092603238 cites W2921518676 @default.
- W3092603238 cites W2946597534 @default.
- W3092603238 cites W2972106736 @default.
- W3092603238 cites W640867091 @default.
- W3092603238 doi "https://doi.org/10.1136/bmjgh-2020-002340" @default.
- W3092603238 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7542627" @default.
- W3092603238 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33028696" @default.
- W3092603238 hasPublicationYear "2020" @default.
- W3092603238 type Work @default.
- W3092603238 sameAs 3092603238 @default.
- W3092603238 citedByCount "1" @default.
- W3092603238 countsByYear W30926032382021 @default.
- W3092603238 crossrefType "journal-article" @default.
- W3092603238 hasAuthorship W3092603238A5006076210 @default.
- W3092603238 hasAuthorship W3092603238A5010679444 @default.
- W3092603238 hasAuthorship W3092603238A5034525330 @default.
- W3092603238 hasAuthorship W3092603238A5036621193 @default.
- W3092603238 hasAuthorship W3092603238A5036981898 @default.
- W3092603238 hasAuthorship W3092603238A5057320116 @default.
- W3092603238 hasAuthorship W3092603238A5061154880 @default.
- W3092603238 hasAuthorship W3092603238A5061325810 @default.
- W3092603238 hasAuthorship W3092603238A5072520289 @default.
- W3092603238 hasAuthorship W3092603238A5072865412 @default.
- W3092603238 hasAuthorship W3092603238A5078336780 @default.
- W3092603238 hasAuthorship W3092603238A5089705547 @default.
- W3092603238 hasBestOaLocation W30926032381 @default.
- W3092603238 hasConcept C138816342 @default.
- W3092603238 hasConcept C159110408 @default.
- W3092603238 hasConcept C2778149918 @default.
- W3092603238 hasConcept C2908647359 @default.
- W3092603238 hasConcept C41008148 @default.
- W3092603238 hasConcept C71924100 @default.
- W3092603238 hasConcept C99454951 @default.
- W3092603238 hasConceptScore W3092603238C138816342 @default.
- W3092603238 hasConceptScore W3092603238C159110408 @default.
- W3092603238 hasConceptScore W3092603238C2778149918 @default.
- W3092603238 hasConceptScore W3092603238C2908647359 @default.
- W3092603238 hasConceptScore W3092603238C41008148 @default.
- W3092603238 hasConceptScore W3092603238C71924100 @default.
- W3092603238 hasConceptScore W3092603238C99454951 @default.
- W3092603238 hasLocation W30926032381 @default.
- W3092603238 hasLocation W30926032382 @default.
- W3092603238 hasOpenAccess W3092603238 @default.
- W3092603238 hasPrimaryLocation W30926032381 @default.
- W3092603238 hasRelatedWork W2519724 @default.
- W3092603238 hasRelatedWork W2786728 @default.
- W3092603238 hasRelatedWork W3415261 @default.
- W3092603238 hasRelatedWork W4271895 @default.
- W3092603238 hasRelatedWork W4368334 @default.
- W3092603238 hasRelatedWork W4583921 @default.
- W3092603238 hasRelatedWork W4803070 @default.