Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092605947> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3092605947 endingPage "104034" @default.
- W3092605947 startingPage "104034" @default.
- W3092605947 abstract "Automatic recognition and classification of leukocytes helps medical practitioners to diagnose various blood-related diseases by analysing their percentages. Different researchers have come up with different algorithms that use traditional learning for the classification of different types of leukocytes. In contrast to traditional learning, in which no knowledge is retained that can be transferred from one model to another, our proposed algorithm uses deep learning approach for segmentation and classification. The proposed algorithm has two-stage pipelining consisting of semantic segmentation and transfer learning-based classification. Here, we have used pre-trained networks, utilizing knowledge from previously learned tasks, called DeepLabv3+ for segmentation of leukocytes and AlexNet to classify five categories of leukocytes in peripheral blood from whole blood smear microscopic images. For experimentation, a microscopic blood image dataset consisting of 257 cells belonging to five types of leukocytes was used. The results obtained from experiments show that the proposed algorithm attained a mean average precision of 98.42% (@IoU = 0.7) in white blood cell localization and a classification accuracy of 98.87 ± 1% compared to existing methods. • Semantic segmentation followed by transfer learning-based recognition is used to classify five categories of leukocytes. • The proposed method has achieved a mean average precision of 98.42% (@ IoU = 0 . 70) in leukocytes localization. • The suggested method attains a classification accuracy of 98.87 ± 1% compared to traditional machine learning techniques. • The proposed algorithm attains better accuracy with limited datasets available in biomedical applications." @default.
- W3092605947 created "2020-10-15" @default.
- W3092605947 creator A5014434373 @default.
- W3092605947 creator A5067990419 @default.
- W3092605947 date "2020-11-01" @default.
- W3092605947 modified "2023-10-01" @default.
- W3092605947 title "Localization and recognition of leukocytes in peripheral blood: A deep learning approach" @default.
- W3092605947 cites W1785872000 @default.
- W3092605947 cites W1791011331 @default.
- W3092605947 cites W1976756294 @default.
- W3092605947 cites W1980276039 @default.
- W3092605947 cites W2035020726 @default.
- W3092605947 cites W2117333179 @default.
- W3092605947 cites W2546410677 @default.
- W3092605947 cites W2546948708 @default.
- W3092605947 cites W2563823404 @default.
- W3092605947 cites W2604319603 @default.
- W3092605947 cites W2736844740 @default.
- W3092605947 cites W2765934242 @default.
- W3092605947 cites W2770156338 @default.
- W3092605947 cites W2783231089 @default.
- W3092605947 cites W2793002108 @default.
- W3092605947 cites W2800710461 @default.
- W3092605947 cites W2801148351 @default.
- W3092605947 cites W2801624633 @default.
- W3092605947 cites W2803432986 @default.
- W3092605947 cites W2803857835 @default.
- W3092605947 cites W2890671308 @default.
- W3092605947 cites W2891686988 @default.
- W3092605947 cites W2894457866 @default.
- W3092605947 cites W2904473961 @default.
- W3092605947 cites W2907322847 @default.
- W3092605947 cites W2911964244 @default.
- W3092605947 cites W2917675508 @default.
- W3092605947 cites W2920067160 @default.
- W3092605947 cites W2924872296 @default.
- W3092605947 cites W2943254826 @default.
- W3092605947 cites W2953681063 @default.
- W3092605947 cites W2963881378 @default.
- W3092605947 cites W2984155152 @default.
- W3092605947 doi "https://doi.org/10.1016/j.compbiomed.2020.104034" @default.
- W3092605947 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33068806" @default.
- W3092605947 hasPublicationYear "2020" @default.
- W3092605947 type Work @default.
- W3092605947 sameAs 3092605947 @default.
- W3092605947 citedByCount "31" @default.
- W3092605947 countsByYear W30926059472021 @default.
- W3092605947 countsByYear W30926059472022 @default.
- W3092605947 countsByYear W30926059472023 @default.
- W3092605947 crossrefType "journal-article" @default.
- W3092605947 hasAuthorship W3092605947A5014434373 @default.
- W3092605947 hasAuthorship W3092605947A5067990419 @default.
- W3092605947 hasConcept C108583219 @default.
- W3092605947 hasConcept C119857082 @default.
- W3092605947 hasConcept C12267149 @default.
- W3092605947 hasConcept C126322002 @default.
- W3092605947 hasConcept C150899416 @default.
- W3092605947 hasConcept C153180895 @default.
- W3092605947 hasConcept C154945302 @default.
- W3092605947 hasConcept C3017910909 @default.
- W3092605947 hasConcept C41008148 @default.
- W3092605947 hasConcept C71924100 @default.
- W3092605947 hasConcept C89600930 @default.
- W3092605947 hasConceptScore W3092605947C108583219 @default.
- W3092605947 hasConceptScore W3092605947C119857082 @default.
- W3092605947 hasConceptScore W3092605947C12267149 @default.
- W3092605947 hasConceptScore W3092605947C126322002 @default.
- W3092605947 hasConceptScore W3092605947C150899416 @default.
- W3092605947 hasConceptScore W3092605947C153180895 @default.
- W3092605947 hasConceptScore W3092605947C154945302 @default.
- W3092605947 hasConceptScore W3092605947C3017910909 @default.
- W3092605947 hasConceptScore W3092605947C41008148 @default.
- W3092605947 hasConceptScore W3092605947C71924100 @default.
- W3092605947 hasConceptScore W3092605947C89600930 @default.
- W3092605947 hasLocation W30926059471 @default.
- W3092605947 hasOpenAccess W3092605947 @default.
- W3092605947 hasPrimaryLocation W30926059471 @default.
- W3092605947 hasRelatedWork W2754350655 @default.
- W3092605947 hasRelatedWork W2803710604 @default.
- W3092605947 hasRelatedWork W2960456850 @default.
- W3092605947 hasRelatedWork W3031818154 @default.
- W3092605947 hasRelatedWork W3133293092 @default.
- W3092605947 hasRelatedWork W3136979370 @default.
- W3092605947 hasRelatedWork W4213299466 @default.
- W3092605947 hasRelatedWork W4311106074 @default.
- W3092605947 hasRelatedWork W4312200629 @default.
- W3092605947 hasRelatedWork W4318957922 @default.
- W3092605947 hasVolume "126" @default.
- W3092605947 isParatext "false" @default.
- W3092605947 isRetracted "false" @default.
- W3092605947 magId "3092605947" @default.
- W3092605947 workType "article" @default.